Personal Fabrication

While fabrication technologies have been in use in industry for several decades, expiring patents have recently allowed the technology to spill over to technology-enthusiastic “makers”. The big question now is whether the technology will further progress towards consumers, which would allow the technology to scale from hundreds of thousands of users to hundreds of millions of users. Such a transition would enable consumers to use computing not just to process data, but for physical matter. This holds the promise of democratizing a whole range of fields preoccupied with physical objects, from product design to interior design, to carpentry, and to some areas of mechanical and structural engineering. It would bring massive, disruptive change to these industries and their users. We analyze similar trends in the history of computing that made the transition from industry to consumers, such as desktop publishing and home video editing, and come to the conclusion that such a transition is likely. Our analysis, however, also reveals that any transition to consumers first requires a hardware + software system that embodies the skills and expert knowledge that consumers lack: (1) hardware and materials that allow fabricating the intended objects, (2) software that embodies domain knowledge, (3) software that embodies the know-how required to operate the machinery, and (4) software that provides immediate feedback and supports interactive exploration. At the same time, sustained success will only be possible if we also consider future implications, in particular (5) sustainability and (6) intellectual property. We argue that researchers in HCI and computer graphics are well equipped for tackling these six challenges. We survey the already existing work and derive an actionable research agenda. P. Baudisch and S. Mueller. Personal Fabrication. Foundations and Trends © in Human-Computer Interaction, vol. 10, no. 3–4, pp. 165–293, 2016. DOI: 10.1561/1100000055.

[1]  Daniel Cohen-Or,et al.  Build-to-last , 2014, ACM Trans. Graph..

[2]  Nathaniel Hudson,et al.  Understanding Newcomers to 3D Printing: Motivations, Workflows, and Barriers of Casual Makers , 2016, CHI.

[3]  Joshua M. Pearce,et al.  Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions , 2014 .

[4]  Jun Wang,et al.  Reforming Shapes for Material‐aware Fabrication , 2015, SGP '15.

[5]  Madeline Gannon,et al.  Tactum: A Skin-Centric Approach to Digital Design and Fabrication , 2015, CHI.

[6]  Charlie C. L. Wang,et al.  Perceptual models of preference in 3D printing direction , 2015, ACM Trans. Graph..

[7]  Peng Song,et al.  CofiFab , 2016, SIGGRAPH 2016.

[8]  Denis Zorin,et al.  Worst-case structural analysis , 2013, ACM Trans. Graph..

[9]  Markus H. Gross,et al.  Interactive design of 3D-printable robotic creatures , 2015, ACM Trans. Graph..

[10]  Wilmot Li,et al.  Designing and fabricating mechanical automata from mocap sequences , 2013, ACM Trans. Graph..

[11]  Takeo Igarashi,et al.  Converting 3D furniture models to fabricatable parts and connectors , 2011, ACM Trans. Graph..

[12]  Joseph A. Paradiso,et al.  The Wise Chisel: The Rise of the Smart Handheld Tool , 2014, IEEE Pervasive Computing.

[13]  Nobuyuki Umetani,et al.  Printone: interactive resonance simulation for free-form print-wind instrument design , 2016, ACM Trans. Graph..

[14]  Takeo Igarashi,et al.  SketchChair: an all-in-one chair design system for end users , 2011, Tangible and Embedded Interaction.

[15]  Anselm Grundhöfer,et al.  Computational thermoforming , 2016, ACM Trans. Graph..

[16]  Olga Sorkine-Hornung,et al.  Spin-it , 2014, ACM Trans. Graph..

[17]  Takeo Igarashi,et al.  PacCAM: material capture and interactive 2D packing for efficient material usage on CNC cutting machines , 2013, UIST.

[18]  Seth Copen Goldstein,et al.  Claytronics: An Instance of Programmable Matter , 2004 .

[19]  E. Thomas,et al.  Micro‐/Nanostructured Mechanical Metamaterials , 2012, Advanced materials.

[20]  Andrea Tagliasacchi,et al.  High-contrast computational caustic design , 2014, ACM Trans. Graph..

[21]  Takeo Igarashi,et al.  Spatial sketch: bridging between movement & fabrication , 2010, TEI '10.

[22]  Tim Weyrich,et al.  Fabricating microgeometry for custom surface reflectance , 2009, ACM Trans. Graph..

[23]  P. Urban,et al.  Pushing the Limits of 3D Color Printing , 2015, ACM Trans. Graph..

[24]  Björn Hartmann,et al.  Sauron: embedded single-camera sensing of printed physical user interfaces , 2013, UIST.

[25]  Stefanie Müller,et al.  LaserOrigami: laser-cutting 3D objects , 2013, CHI.

[26]  Pedro Lopes,et al.  Interactive construction: interactive fabrication of functional mechanical devices , 2012, UIST.

[27]  Wojciech Matusik,et al.  A compiler for 3D machine knitting , 2016, ACM Trans. Graph..

[28]  Joseph A. Paradiso,et al.  Human-computer interaction for hybrid carving , 2013, UIST.

[29]  Scicon Ltd Manufacturing control system , 1987 .

[30]  Wojciech Matusik,et al.  Design and fabrication by example , 2014, ACM Trans. Graph..

[31]  James H. Aylor,et al.  Computer for the 21st Century , 1999, Computer.

[32]  Martin Wegener,et al.  Metamaterials beyond electromagnetism , 2013, Reports on progress in physics. Physical Society.

[33]  Xiang 'Anthony' Chen,et al.  3D Printed Hair: Fused Deposition Modeling of Soft Strands, Fibers, and Bristles , 2015, UIST.

[34]  Scott E. Hudson,et al.  A Layered Fabric 3D Printer for Soft Interactive Objects , 2015, CHI.

[35]  Bedrich Benes,et al.  Clever Support: Efficient Support Structure Generation for Digital Fabrication , 2014, Comput. Graph. Forum.

[36]  Sandy Mackay Manufacturing Processes for Design Professionals , 2012 .

[37]  Steve Marschner,et al.  Microstructures to control elasticity in 3D printing , 2015, ACM Trans. Graph..

[38]  Doug L. James,et al.  Fabricating articulated characters from skinned meshes , 2012, ACM Trans. Graph..

[39]  Wilmot Li,et al.  Creating works-like prototypes of mechanical objects , 2014, ACM Trans. Graph..

[40]  Amit Zoran,et al.  D-Coil: A Hands-on Approach to Digital 3D Models Design , 2015, CHI.

[41]  Hans-Werner Gellersen,et al.  ReForm: Integrating Physical and Digital Design through Bidirectional Fabrication , 2015, UIST.

[42]  Eric Williams,et al.  Forecasting global generation of obsolete personal computers. , 2010, Environmental science & technology.

[43]  Ligang Liu,et al.  FrameFab: robotic fabrication of frame shapes , 2016, ACM Trans. Graph..

[44]  Daniel Cohen-Or,et al.  Connected fermat spirals for layered fabrication , 2016, ACM Trans. Graph..

[45]  Yasuaki Kakehi,et al.  enchanted scissors: a scissor interface for support in cutting and interactive fabrication , 2013, SIGGRAPH '13.

[46]  Radomír Mech,et al.  Dual‐color mixing for fused deposition modeling printers , 2014, Comput. Graph. Forum.

[47]  Robert Kovacs,et al.  Protopiper: Physically Sketching Room-Sized Objects at Actual Scale , 2015, UIST.

[48]  Marc Alexa,et al.  Orthogonal slicing for additive manufacturing , 2013, Comput. Graph..

[49]  Scott E. Hudson,et al.  A 3D Printer for Interactive Electromagnetic Devices , 2016, UIST.

[50]  Neil Gershenfeld,et al.  FAB: The Coming Revolution on Your Desktop--from Personal Computers to Personal Fabrication , 2005 .

[51]  Daniel J. Wigdor,et al.  Foldem: Heterogeneous Object Fabrication via Selective Ablation of Multi-Material Sheets , 2016, CHI.

[52]  Sylvain Lefebvre,et al.  Bridging the gap , 2014, ACM Trans. Graph..

[53]  Damiano Pasini,et al.  Snapping mechanical metamaterials under tension. , 2015, Advanced materials.

[54]  Ligang Liu,et al.  Cost-effective printing of 3D objects with skin-frame structures , 2013, ACM Trans. Graph..

[55]  Robert Kovacs,et al.  Patching Physical Objects , 2015, UIST.

[56]  Björn Hartmann,et al.  Midas: fabricating custom capacitive touch sensors to prototype interactive objects , 2012, UIST '12.

[57]  John J. Vericella,et al.  High‐Throughput Printing via Microvascular Multinozzle Arrays , 2013, Advanced materials.

[58]  Eric Paulos,et al.  MetaMorphe: Designing Expressive 3D Models for Digital Fabrication , 2015, Creativity & Cognition.

[59]  Takeo Igarashi,et al.  Plushie: an interactive design system for plush toys , 2007, ACM Trans. Graph..

[60]  Joseph A. Paradiso,et al.  FreeD: a freehand digital sculpting tool , 2013, CHI.

[61]  Radomír Mech,et al.  Stress relief , 2012, ACM Trans. Graph..

[62]  Joseph A. Paradiso,et al.  The Hybrid Artisans: A Case Study in Smart Tools , 2013, TCHI.

[63]  Steve Marschner,et al.  Physical Face Cloning , 2022 .

[64]  J. Mitani,et al.  Making papercraft toys from meshes using strip-based approximate unfolding , 2004, SIGGRAPH 2004.

[65]  Takeo Igarashi,et al.  Situated modeling: a shape-stamping interface with tangible primitives , 2012, Tangible and Embedded Interaction.

[66]  Björn Hartmann,et al.  A series of tubes: adding interactivity to 3D prints using internal pipes , 2014, UIST.

[67]  Gabriel Weinreich,et al.  Music and Technology in the Twentieth Century , 2003 .

[68]  Hiroshi Ishii,et al.  Cilllia: 3D Printed Micro-Pillar Structures for Surface Texture, Actuation and Sensing , 2016, CHI.

[69]  Stefanie Müller,et al.  LaserStacker: Fabricating 3D Objects by Laser Cutting and Welding , 2015, UIST.

[70]  Wilmot Li,et al.  Lamello: Passive Acoustic Sensing for Tangible Input Components , 2015, CHI.

[71]  Paolo Cignoni,et al.  Elastic textures for additive fabrication , 2015, ACM Trans. Graph..

[72]  Sylvain Lefebvre,et al.  Synthesis of filigrees for digital fabrication , 2016, ACM Trans. Graph..

[73]  Wojciech Matusik,et al.  Acoustic voxels , 2016, ACM Trans. Graph..

[74]  Tim Weyrich,et al.  State of the Art in Computational Fabrication and Display of Material Appearance , 2013 .

[75]  Wojciech Matusik,et al.  Computational multicopter design , 2016, ACM Trans. Graph..

[76]  Yunbo Zhang,et al.  RevoMaker: Enabling Multi-directional and Functionally-embedded 3D printing using a Rotational Cuboidal Platform , 2015, UIST.

[77]  Hang Li,et al.  Saliency‐Preserving Slicing Optimization for Effective 3D Printing , 2015, Comput. Graph. Forum.

[78]  Thijs Roumen,et al.  Mobile Fabrication , 2016, UIST.

[79]  Wojciech Matusik,et al.  MultiFab , 2015, ACM Trans. Graph..

[80]  Scott E. Hudson,et al.  Printing teddy bears: a technique for 3D printing of soft interactive objects , 2014, CHI.

[81]  Patrick Baudisch,et al.  Low-Fidelity Fabrication: Speeding up Design Iteration of 3D Objects , 2015, CHI Extended Abstracts.

[82]  Takeo Igarashi,et al.  Designing Custom-made Metallophone with Concurrent Eigenanalysis , 2010, NIME.

[83]  Geoffrey A. Moore Crossing the chasm : marketing and selling high-tech products to mainstream customers , 1999 .

[84]  Patrick Baudisch,et al.  Scotty: Relocating Physical Objects Across Distances Using Destructive Scanning, Encryption, and 3D Printing , 2015, TEI.

[85]  Jamie Zigelbaum,et al.  Shape-changing interfaces , 2011, Personal and Ubiquitous Computing.

[86]  Bernhard Thomaszewski,et al.  Designing structurally-sound ornamental curve networks , 2016, ACM Trans. Graph..

[87]  Takeo Igarashi,et al.  Interactive Cover Design Considering Physical Constraints , 2009, Comput. Graph. Forum.

[88]  Nobuyuki Umetani,et al.  OmniAD: data-driven omni-directional aerodynamics , 2015, ACM Trans. Graph..

[89]  Amit Zoran,et al.  Steel-Sense: Integrating Machine Elements with Sensors by Additive Manufacturing , 2016, CHI.

[90]  Michael A. Hiltzik,et al.  Dealers of lightning : Xerox PARC and the dawn of the computer age , 1999 .

[91]  Hans-Werner Gellersen,et al.  Enclosed: a component-centric interface for designing prototype enclosures , 2013, TEI '13.

[92]  M. Otaduy,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..

[93]  Marc Alexa,et al.  3D-Printing Spatially Varying BRDFs , 2013, IEEE Computer Graphics and Applications.

[94]  Brian Rideout Printing the Impossible Triangle: The Copyright Implications of Three-Dimensional Printing , 2011 .

[95]  Jan Kautz,et al.  3D-printing of non-assembly, articulated models , 2012, ACM Trans. Graph..

[96]  Markus H. Gross,et al.  Stenciling: Designing Structurally‐Sound Surfaces with Decorative Patterns , 2016, Comput. Graph. Forum.

[97]  Yongkwan Kim,et al.  SketchingWithHands: 3D Sketching Handheld Products with First-Person Hand Posture , 2016, UIST.

[98]  David Kim,et al.  MixFab: a mixed-reality environment for personal fabrication , 2014, CHI.

[99]  David A. Hutchins,et al.  A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors , 2012, PloS one.

[100]  Nobuyuki Umetani,et al.  Cross-sectional structural analysis for 3D printing optimization , 2013, SIGGRAPH ASIA Technical Briefs.

[101]  Wojciech Matusik,et al.  Physical reproduction of materials with specified subsurface scattering , 2010, ACM Trans. Graph..

[102]  Wojciech Matusik,et al.  OpenFab , 2013, ACM Trans. Graph..

[103]  Wojciech Matusik,et al.  Fab forms , 2015, ACM Trans. Graph..

[104]  Anton J.M. Schoot Uiterkamp,et al.  A global sustainability perspective on 3D printing technologies , 2014 .

[105]  Eitan Grinspun,et al.  Computational design of linkage-based characters , 2014, ACM Trans. Graph..

[106]  Hod Lipson,et al.  Methods of Parallel Voxel Manipulation for 3D Digital Printing , 2007 .

[107]  Wojciech Matusik,et al.  Computational design of metallophone contact sounds , 2015, ACM Trans. Graph..

[108]  Wojciech Matusik,et al.  Spec2Fab , 2013, ACM Trans. Graph..

[109]  J. Lewis,et al.  Device fabrication: Three-dimensional printed electronics , 2015, Nature.

[110]  Wojciech Matusik,et al.  Chopper: partitioning models into 3D-printable parts , 2012, ACM Trans. Graph..

[111]  Madeline Gannon,et al.  ExoSkin: On-Body Fabrication , 2016, CHI.

[112]  Bernhard Thomaszewski,et al.  LinkEdit: interactive linkage editing using symbolic kinematics , 2015, ACM Trans. Graph..

[113]  Juan Carlos,et al.  Comparative study of auxetic geometries by means of computer-aided design and engineering , 2012 .

[114]  Ye Wang,et al.  Foundry: Hierarchical Material Design for Multi-Material Fabrication , 2016, UIST.

[115]  Steve Marschner,et al.  Printing arbitrary meshes with a 5DOF wireframe printer , 2016, ACM Trans. Graph..

[116]  Eric B. Duoss,et al.  Planar and Three-Dimensional Printing of Conductive Inks , 2011, Journal of visualized experiments : JoVE.

[117]  Joseph A. Paradiso,et al.  Augmented Airbrush for Computer Aided Painting (CAP) , 2015, TOGS.

[118]  Wojciech Matusik,et al.  Computing and Fabricating Multiplanar Models , 2013, Comput. Graph. Forum.

[119]  Chris Harrison,et al.  3D Printing Pneumatic Device Controls with Variable Activation Force Capabilities , 2015, CHI.

[120]  Wojciech Matusik,et al.  Stochastic structural analysis for context-aware design and fabrication , 2016, ACM Trans. Graph..

[121]  Eitan Grinspun,et al.  ChaCra: an interactive design system for rapid character crafting , 2015, SCA '14.

[122]  Bernd Bickel,et al.  Computational design of walking automata , 2015, Symposium on Computer Animation.

[123]  Olga Sorkine-Hornung,et al.  Texture Mapping Real‐World Objects with Hydrographics , 2015, SGP '15.

[124]  Karl D. D. Willis,et al.  InfraStructs: fabricating information inside physical objects for imaging in the terahertz region , 2013, ACM Trans. Graph..

[125]  Hod Lipson,et al.  The ModelCraft framework: Capturing freehand annotations and edits to facilitate the 3D model design process using a digital pen , 2009, TCHI.

[126]  Jessica K. Hodgins,et al.  Prototyping robot appearance, movement, and interactions using flexible 3D printing and air pressure sensors , 2012, 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication.

[127]  M. van Hecke,et al.  Programmable mechanical metamaterials. , 2014, Physical review letters.

[128]  T. Kerikmäe,et al.  The Future of Law and eTechnologies , 2016 .

[129]  Hiroshi Ishii,et al.  CopyCAD: remixing physical objects with copy and paste from the real world , 2010, UIST '10.

[130]  D. Cohen-Or,et al.  Dapper , 2015, ACM Trans. Graph..

[131]  Hiroshi Ishii,et al.  PneUI: pneumatically actuated soft composite materials for shape changing interfaces , 2013, UIST.

[132]  Steve Marschner,et al.  On-The-Fly Print: Incremental Printing While Modelling , 2016, CHI.

[133]  Jongmin Shim,et al.  Buckling-induced encapsulation of structured elastic shells under pressure , 2012, Proceedings of the National Academy of Sciences.

[134]  Ivan Poupyrev,et al.  Printed optics: 3D printing of embedded optical elements for interactive devices , 2012, UIST.

[135]  Ivan E. Sutherland,et al.  Sketchpad a Man-Machine Graphical Communication System , 1899, Outstanding Dissertations in the Computer Sciences.

[136]  Mark Pauly,et al.  Fabrication‐aware Design with Intersecting Planar Pieces , 2013, Comput. Graph. Forum.

[137]  Stefanie Müller,et al.  WirePrint: 3D printed previews for fast prototyping , 2014, UIST.

[138]  Joshua M. Pearce,et al.  Distributed recycling of waste polymer into RepRap feedstock , 2013 .

[139]  Nobuyuki Umetani,et al.  FlatFitFab: interactive modeling with planar sections , 2014, UIST.

[140]  Lingfeng Wang,et al.  Buoyancy Optimization for Computational Fabrication , 2016, Comput. Graph. Forum.

[141]  Pedro Lopes,et al.  Metamaterial Mechanisms , 2016, UIST.

[142]  Shingo Uchihashi,et al.  Video Manga: generating semantically meaningful video summaries , 1999, MULTIMEDIA '99.

[143]  Ryan B. Wicker,et al.  Integrating stereolithography and direct print technologies for 3D structural electronics fabrication , 2012 .

[144]  Wendy E. Mackay,et al.  Stretchis: Fabricating Highly Stretchable User Interfaces , 2016, UIST.

[145]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[146]  Leonardo Bonanni,et al.  Dishmaker : Personal Fabrication Interface , 2005 .

[147]  Nobuyuki Umetani,et al.  Branching support structures for 3D printing , 2014, SIGGRAPH '14.

[148]  Umar Ansari,et al.  Review of Mechanics and Applications of Auxetic Structures , 2014 .

[149]  Takeo Igarashi,et al.  Pteromys: interactive design and optimization of free-formed free-flight model airplanes , 2014, ACM Trans. Graph..

[150]  Baining Guo,et al.  Motion-guided mechanical toy modeling , 2012, ACM Trans. Graph..

[151]  Stephen Reay,et al.  Sustainable product design through additive manufacturing , 2013 .

[152]  Sylvain Lefebvre,et al.  Procedural voronoi foams for additive manufacturing , 2016, ACM Trans. Graph..

[153]  Toshio Fukuda,et al.  Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[154]  Takashi Maekawa,et al.  Fabrication of freeform objects by principal strips , 2016, ACM Trans. Graph..

[155]  Wojciech Matusik,et al.  Computational Light Routing , 2014, ACM Trans. Graph..

[156]  D. C. Englebart,et al.  Augmenting human intellect: a conceptual framework , 1962 .

[157]  Ben Shneiderman,et al.  Direct Manipulation: A Step Beyond Programming Languages , 1983, Computer.

[158]  Takeo Igarashi,et al.  DressUp: a 3D interface for clothing design with a physical mannequin , 2012, TEI.

[159]  Fumihisa Shibata,et al.  Enjoying virtual handcrafting with ToolDevice , 2012, UIST Adjunct Proceedings '12.

[160]  Hiroshi Ishii,et al.  Tangible bits: towards seamless interfaces between people, bits and atoms , 1997, CHI.

[161]  Wojciech Matusik,et al.  Computational design of mechanical characters , 2013, ACM Trans. Graph..

[162]  Mark D. Gross,et al.  Interactive fabrication: new interfaces for digital fabrication , 2010, TEI.

[163]  Patrick Baudisch,et al.  faBrickation: fast 3D printing of functional objects by integrating construction kit building blocks , 2014, CHI.

[164]  Jeremy Faludi,et al.  Does Material Choice Drive Sustainability of 3D Printing , 2015 .

[165]  Hiroshi Ishii,et al.  inFORM: dynamic physical affordances and constraints through shape and object actuation , 2013, UIST.

[166]  Eric Paulos,et al.  HapticPrint: Designing Feel Aesthetics for Digital Fabrication , 2015, UIST.

[167]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[168]  Markus H. Gross,et al.  Computational design of actuated deformable characters , 2013, ACM Trans. Graph..

[169]  Frédo Durand,et al.  Position-correcting tools for 2D digital fabrication , 2012, ACM Trans. Graph..

[170]  Pieter Peers,et al.  A compact factored representation of heterogeneous subsurface scattering , 2006, ACM Trans. Graph..

[171]  Rolf Widmer,et al.  Global perspectives on e-waste , 2005 .

[172]  Sungmin Cho,et al.  Turn: a virtual pottery by real spinning wheel , 2012, SIGGRAPH '12.