LUT-Based Hierarchical Reversible Logic Synthesis

We present a synthesis framework to map logic networks into quantum circuits for quantum computing. The synthesis framework is based on lookup-table (LUT) networks, which play a key role in conventional logic synthesis. Establishing a connection between LUTs in an LUT network and reversible single-target gates in a reversible network allows us to bridge conventional logic synthesis with logic synthesis for quantum computing, despite several fundamental differences. We call our synthesis framework LUT-based hierarchical reversible logic synthesis (LHRS). Input to LHRS is a classical logic network representing an arbitrary Boolean combinational operation; output is a quantum network (realized in terms of Clifford+T gates). The framework allows one to account for qubit count requirements imposed by the overlying quantum algorithm or target quantum computing hardware. In a fast first step, an initial network is derived that only consists of single-target gates and already completely determines the number of qubits in the final quantum network. Different methods are then used to map each single-target gate into Clifford+T gates, while aiming at optimally using available resources. We demonstrate the versatility of our method by conducting a design space exploration using different parameters on a set of large combinational benchmarks. On the same benchmarks, we show that our approach can advance over the state-of-the-art hierarchical reversible logic synthesis algorithms.

[1]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[2]  Giovanni De Micheli,et al.  Design automation and design space exploration for quantum computers , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[3]  Mariusz Rawski Application of Functional Decomposition in Synthesis of Reversible Circuits , 2015, RC.

[4]  Jason Cong,et al.  Cut ranking and pruning: enabling a general and efficient FPGA mapping solution , 1999, FPGA '99.

[5]  Robert Wille,et al.  Reducing the number of lines in reversible circuits , 2010, Design Automation Conference.

[6]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[7]  Giovanni De Micheli,et al.  Majority-Inverter Graph: A New Paradigm for Logic Optimization , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  Robert K. Brayton,et al.  Fast-extract with cube hashing , 2017, 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC).

[9]  Jason Cong,et al.  On Area/Depth Trade-off in LUT-Based FPGA Technology Mapping , 1993, 30th ACM/IEEE Design Automation Conference.

[10]  Jean-Pierre Deschamps,et al.  Discrete and switching functions , 1978 .

[11]  Rolf Drechsler,et al.  Technology Mapping of Reversible Circuits to Clifford+T Quantum Circuits , 2016, 2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL).

[12]  Margaret Martonosi,et al.  Programming languages and compiler design for realistic quantum hardware , 2017, Nature.

[13]  Tsutomu Sasao And-Exor Expressions and their Optimization , 1993 .

[14]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[15]  Robert Wille,et al.  Exact Multiple-Control Toffoli Network Synthesis With SAT Techniques , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[16]  M. Thornton,et al.  ESOP-based Toffoli Gate Cascade Generation , 2007, 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing.

[17]  Guowu Yang,et al.  Computing Affine Equivalence Classes of Boolean Functions by Group Isomorphism , 2016, IEEE Transactions on Computers.

[18]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[19]  Jayalal Sarma,et al.  Reversible Pebble Game on Trees , 2015, COCOON.

[20]  Robert Wille,et al.  Hierarchical synthesis of reversible circuits using positive and negative Davio decomposition , 2010, 2010 5th International Design and Test Workshop.

[21]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.

[22]  M. Harrison On the Classification of Boolean Functions by the General Linear and Affine Groups , 1964 .

[23]  Giovanni De Micheli,et al.  Hierarchical reversible logic synthesis using LUTs , 2017, 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).

[24]  Krysta Marie Svore,et al.  LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing , 2014, ArXiv.

[25]  Jason Cong,et al.  DAOmap: a depth-optimal area optimization mapping algorithm for FPGA designs , 2004, ICCAD 2004.

[26]  Jacqueline E. Rice,et al.  Line reduction in reversible circuits using KFDDs , 2015, 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM).

[27]  Jason Cong,et al.  FlowMap: an optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[28]  Rolf Drechsler,et al.  Mapping NCV Circuits to Optimized Clifford+T Circuits , 2014, RC.

[29]  Gerhard W. Dueck,et al.  A transformation based algorithm for reversible logic synthesis , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[30]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[31]  G. Bioul Minimization of ring-sum expansion of Boolean functions , 1973 .

[32]  Mathias Soeken,et al.  Unlocking efficiency and scalability of reversible logic synthesis using conventional logic synthesis , 2016, 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).

[33]  Robert Wille,et al.  BDD-based synthesis of reversible logic for large functions , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[34]  Malay K. Ganai,et al.  Robust Boolean reasoning for equivalence checking and functional property verification , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[35]  Sungmin Cho,et al.  Combinational and sequential mapping with priority cuts , 2007, ICCAD 2007.

[36]  Stephen Dean Brown,et al.  Heuristics for Area Minimization in LUT-Based FPGA Technology Mapping , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[37]  Bruno Schmitt SAT-Based Area Recovery in Technology Mapping , 2017 .

[38]  Rolf Drechsler Preudo-Kronecker Expressions for Symmetric Functions , 1999, IEEE Trans. Computers.

[39]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[40]  Michele Mosca,et al.  Parallelizing quantum circuit synthesis , 2016, 1606.07413.

[41]  Giovanni De Micheli,et al.  Enumeration of Reversible Functions and Its Application to Circuit Complexity , 2016, RC.

[42]  Robert K. Brayton,et al.  Mapping into LUT structures , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[43]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[44]  George K. Papakonstantinou,et al.  A fast and efficient heuristic ESOP minimization algorithm , 2004, GLSVLSI '04.

[45]  Stefan Frehse,et al.  RevKit: A Toolkit for Reversible Circuit Design , 2012, J. Multiple Valued Log. Soft Comput..

[46]  Alexis De Vos,et al.  Young subgroups for reversible computers , 2008, Adv. Math. Commun..

[47]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[48]  Michael A. Harrison,et al.  The Number of Equivalence Classes of Boolean Functions Under Groups Containing Negation , 1963, IEEE Trans. Electron. Comput..

[49]  Richard Královic Time and space complexity of reversible pebbling , 2004, RAIRO Theor. Informatics Appl..

[50]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[51]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[52]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[53]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[54]  Robert K. Brayton,et al.  ABC: An Academic Industrial-Strength Verification Tool , 2010, CAV.

[55]  Siu Man Chan Just a Pebble Game , 2013, 2013 IEEE Conference on Computational Complexity.

[56]  Martin Rötteler,et al.  REVS: A Tool for Space-Optimized Reversible Circuit Synthesis , 2017, RC.

[57]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[58]  Robert K. Brayton,et al.  Improvements to Technology Mapping for LUT-Based FPGAs , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[59]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[60]  Marek A. Perkowski,et al.  Minimization of exclusive sum-of-products expressions for multiple-valued input, incompletely specified functions , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[61]  Dmitri Maslov,et al.  On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization , 2015, ArXiv.

[62]  A. Mishchenko,et al.  Fast Heuristic Minimization of Exclusive-Sums-of-Products , 2001 .