Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature
暂无分享,去创建一个
[1] S. S. Ballard,et al. New Data on the Thermal Conductivity of Optical Crystals , 1951 .
[2] R. Reeber,et al. Thermal expansion and molar volume of MgO, periclase, from 5 to 2900 K , 1995 .
[3] A. Hofmeister. Comment on “Measurement of thermal diffusivity at high pressure using a transient heating technique” [Appl. Phys. Lett. 91, 181914 (2007)] , 2009 .
[4] D. Yuen,et al. Critical phenomena in thermal conductivity: Implications for lower mantle dynamics , 2007 .
[5] Jianjun Dong,et al. Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.
[6] S. Clark,et al. Handbook of physical constants , 1966 .
[7] T. Tong. Thermal Conductivity 22 , 1994 .
[8] G. Bäckström,et al. Techniques for determining thermal conductivity and heat capacity under hydrostatic pressure , 1986 .
[9] Nico de Koker,et al. Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics. , 2009 .
[10] T. Yagi,et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary , 2012 .
[11] A. Hofmeister. Thermal diffusivity of garnets at high temperature , 2006 .
[12] A. Salazar. On thermal diffusivity , 2003 .
[13] D. Cahill,et al. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure , 2013, Scientific Reports.
[14] A. Whittington,et al. Effects of hydration, annealing, and melting on heat transport properties of fused quartz and fused silica from laser-flash analysis , 2012 .
[15] D. Frost,et al. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core , 2011, Proceedings of the National Academy of Sciences.
[16] H. Mao,et al. Elasticity of MgO and a primary pressure scale to 55 GPa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[17] P. Richet,et al. High-temperature thermal expansion of lime, periclase, corundum and spinel , 1999 .
[18] M. W. Chase,et al. NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .
[19] A. Whittington,et al. Geophysical implications of reduction in thermal conductivity due to hydration , 2006 .
[20] Watson,et al. Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.
[21] H. Mao,et al. Pressure derivatives of shear and bulk moduli from the thermal Grüneisen parameter and volume-pressure data , 2003 .
[22] A. Whittington,et al. Effects of chemical composition and temperature on transport properties of silica-rich glasses and melts , 2014 .
[23] E. D. West,et al. Enthalpy and Heat-Capacity Standard Reference Material: Synthetic Sapphire (α-Al2O3) from 10 to 2250 K. , 1982, Journal of research of the National Bureau of Standards.
[24] Quan Liu,et al. Elastic Constants of Mantle Minerals at High Temperature , 2008 .
[25] P. B. Allen,et al. Lattice thermal conductivity: Computations and theory of the high-temperature breakdown of the phonon-gas model , 2010 .
[26] Kenichi P. Kobayashi,et al. Thermal diffusivity measurement in a diamond anvil cell using a light pulse thermoreflectance technique , 2011 .
[27] A. Hofmeister. Scale aspects of heat transport in the diamond anvil cell, in spectroscopic modeling, and in Earth's mantle: Implications for secular cooling , 2010 .
[28] J. Blumm,et al. Improvement of the mathematical modeling of flash measurements , 2002 .
[29] M. Salanne,et al. O ct 2 01 2 Thermal conductivity of MgO , MgSiO 3 perovskite and post-perovskite in the Earth ’ s deep mantle , 2012 .
[30] R. J. Jenkins,et al. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .
[31] Xiaoli Tang,et al. Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity , 2009 .
[32] N. Koker. Thermal conductivity of MgO periclase at high pressure: Implications for the D″ region , 2010 .
[33] Y. S. Touloukian,et al. Thermal conductivity: nonmetallic solids , 1970 .
[34] P. Beck,et al. Thermal conductivity of lower-mantle minerals , 2009 .
[35] Thermal diffusivity of periclase at high temperatures and high pressures , 1997 .
[36] L. Stixrude,et al. Thermal conductivity of periclase (MgO) from first principles. , 2010, Physical review letters.
[37] G. A. Slack,et al. Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3 to 300K , 1962 .
[38] Anne M. Hofmeister,et al. Inference of high thermal transport in the lower mantle from laser-flash experiments and the damped harmonic oscillator model , 2008 .
[39] P. Richet,et al. High-temperature heat capacity and premelting of minerals in the system MgO-CaO-Al2O3-SiO2 , 1991 .
[40] A. Hofmeister,et al. Thermal Conductivity of the Earth , 2015 .
[41] A. Hofmeister. Pressure dependence of thermal transport properties , 2007, Proceedings of the National Academy of Sciences.
[42] G. A. Slack,et al. The Thermal Conductivity of Nonmetallic Crystals , 1979 .
[43] S. Saxena,et al. Thermal Expansion of Periclase (MgO) and Tungsten (W) to Melting Temperatures , 1997 .
[44] H. Mehling,et al. Thermal Diffusivity of Semitransparent Materials Determined by the Laser-Flash Method Applying a New Analytical Model , 1998 .
[45] A. Hofmeister,et al. Thermal diffusivity of alkali and silver halide crystals as a function of temperature , 2011 .
[46] J. Castaing,et al. Hydrogen defects in α-Al2O3 and water weakening of sapphire and alumina ceramics between 600 and 1000°C—I. Infrared characterization of defects , 2000 .
[47] A. Hofmeister,et al. How irreversible heat transport processes drive Earth's interdependent thermal, structural, and chemical evolution , 2013 .
[48] B. Militzer,et al. Measurement of thermal diffusivity at high pressure using a transient heating technique , 2007 .
[49] A. Hofmeister. IR reflectance spectra of natural ilmenite; comparison with isostructural compounds and calculation of thermodynamic properties , 1993 .
[50] A. Hofmeister. Thermal diffusivity of orthopyroxenes and protoenstatite as a function of temperature and chemical composition , 2012 .
[51] R. Boehler. High‐pressure experiments and the phase diagram of lower mantle and core materials , 2000 .