Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature

Thermal diffusivity (D) was measured up to ~1,800 K of refractory materials using laser-flash analysis, which lacks radiative transfer gains and contact losses. The focus is on single-crystal MgO and Al2O3. These data are needed to benchmark theoretical models and thereby improve understanding of deep mantle processes. Measurements of AlN, Mg(OH)2, and isostructural BeO show that the power law (D = AT−B) where T is temperature holds for simple structures. Results for more structurally complicated corundum Al2O3 with and without impurity atoms are best fit by CTd + ETf where d ~ −1 and f ~ −4, whereas for isostructural Fe2O3, f is near +3 and multiphase ilmenite Fe1.12Ti0.88O3 is fit by the above power law. The positive temperature response for hematite is attributed to diffusive radiative transfer arising from electronic–vibronic coupling. We find good agreement of k and D data on single-crystal and non-porous ceramic Al2O3. For the corundum structure, D is nearly independent of T at high T. Although D at 298 K depends strongly on chemical composition, at high temperature, these differences are reduced. Thermal conductivity provided for MgO and Al2O3, using LFA data and literature values of density and heat capacity, differs from contact measurements which include systematic errors. The effect of pressure is discussed, along with implications for the deepest mantle.

[1]  S. S. Ballard,et al.  New Data on the Thermal Conductivity of Optical Crystals , 1951 .

[2]  R. Reeber,et al.  Thermal expansion and molar volume of MgO, periclase, from 5 to 2900 K , 1995 .

[3]  A. Hofmeister Comment on “Measurement of thermal diffusivity at high pressure using a transient heating technique” [Appl. Phys. Lett. 91, 181914 (2007)] , 2009 .

[4]  D. Yuen,et al.  Critical phenomena in thermal conductivity: Implications for lower mantle dynamics , 2007 .

[5]  Jianjun Dong,et al.  Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.

[6]  S. Clark,et al.  Handbook of physical constants , 1966 .

[7]  T. Tong Thermal Conductivity 22 , 1994 .

[8]  G. Bäckström,et al.  Techniques for determining thermal conductivity and heat capacity under hydrostatic pressure , 1986 .

[9]  Nico de Koker,et al.  Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics. , 2009 .

[10]  T. Yagi,et al.  Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary , 2012 .

[11]  A. Hofmeister Thermal diffusivity of garnets at high temperature , 2006 .

[12]  A. Salazar On thermal diffusivity , 2003 .

[13]  D. Cahill,et al.  Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure , 2013, Scientific Reports.

[14]  A. Whittington,et al.  Effects of hydration, annealing, and melting on heat transport properties of fused quartz and fused silica from laser-flash analysis , 2012 .

[15]  D. Frost,et al.  Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core , 2011, Proceedings of the National Academy of Sciences.

[16]  H. Mao,et al.  Elasticity of MgO and a primary pressure scale to 55 GPa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Richet,et al.  High-temperature thermal expansion of lime, periclase, corundum and spinel , 1999 .

[18]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .

[19]  A. Whittington,et al.  Geophysical implications of reduction in thermal conductivity due to hydration , 2006 .

[20]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[21]  H. Mao,et al.  Pressure derivatives of shear and bulk moduli from the thermal Grüneisen parameter and volume-pressure data , 2003 .

[22]  A. Whittington,et al.  Effects of chemical composition and temperature on transport properties of silica-rich glasses and melts , 2014 .

[23]  E. D. West,et al.  Enthalpy and Heat-Capacity Standard Reference Material: Synthetic Sapphire (α-Al2O3) from 10 to 2250 K. , 1982, Journal of research of the National Bureau of Standards.

[24]  Quan Liu,et al.  Elastic Constants of Mantle Minerals at High Temperature , 2008 .

[25]  P. B. Allen,et al.  Lattice thermal conductivity: Computations and theory of the high-temperature breakdown of the phonon-gas model , 2010 .

[26]  Kenichi P. Kobayashi,et al.  Thermal diffusivity measurement in a diamond anvil cell using a light pulse thermoreflectance technique , 2011 .

[27]  A. Hofmeister Scale aspects of heat transport in the diamond anvil cell, in spectroscopic modeling, and in Earth's mantle: Implications for secular cooling , 2010 .

[28]  J. Blumm,et al.  Improvement of the mathematical modeling of flash measurements , 2002 .

[29]  M. Salanne,et al.  O ct 2 01 2 Thermal conductivity of MgO , MgSiO 3 perovskite and post-perovskite in the Earth ’ s deep mantle , 2012 .

[30]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[31]  Xiaoli Tang,et al.  Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity , 2009 .

[32]  N. Koker Thermal conductivity of MgO periclase at high pressure: Implications for the D″ region , 2010 .

[33]  Y. S. Touloukian,et al.  Thermal conductivity: nonmetallic solids , 1970 .

[34]  P. Beck,et al.  Thermal conductivity of lower-mantle minerals , 2009 .

[35]  Thermal diffusivity of periclase at high temperatures and high pressures , 1997 .

[36]  L. Stixrude,et al.  Thermal conductivity of periclase (MgO) from first principles. , 2010, Physical review letters.

[37]  G. A. Slack,et al.  Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3 to 300K , 1962 .

[38]  Anne M. Hofmeister,et al.  Inference of high thermal transport in the lower mantle from laser-flash experiments and the damped harmonic oscillator model , 2008 .

[39]  P. Richet,et al.  High-temperature heat capacity and premelting of minerals in the system MgO-CaO-Al2O3-SiO2 , 1991 .

[40]  A. Hofmeister,et al.  Thermal Conductivity of the Earth , 2015 .

[41]  A. Hofmeister Pressure dependence of thermal transport properties , 2007, Proceedings of the National Academy of Sciences.

[42]  G. A. Slack,et al.  The Thermal Conductivity of Nonmetallic Crystals , 1979 .

[43]  S. Saxena,et al.  Thermal Expansion of Periclase (MgO) and Tungsten (W) to Melting Temperatures , 1997 .

[44]  H. Mehling,et al.  Thermal Diffusivity of Semitransparent Materials Determined by the Laser-Flash Method Applying a New Analytical Model , 1998 .

[45]  A. Hofmeister,et al.  Thermal diffusivity of alkali and silver halide crystals as a function of temperature , 2011 .

[46]  J. Castaing,et al.  Hydrogen defects in α-Al2O3 and water weakening of sapphire and alumina ceramics between 600 and 1000°C—I. Infrared characterization of defects , 2000 .

[47]  A. Hofmeister,et al.  How irreversible heat transport processes drive Earth's interdependent thermal, structural, and chemical evolution , 2013 .

[48]  B. Militzer,et al.  Measurement of thermal diffusivity at high pressure using a transient heating technique , 2007 .

[49]  A. Hofmeister IR reflectance spectra of natural ilmenite; comparison with isostructural compounds and calculation of thermodynamic properties , 1993 .

[50]  A. Hofmeister Thermal diffusivity of orthopyroxenes and protoenstatite as a function of temperature and chemical composition , 2012 .

[51]  R. Boehler High‐pressure experiments and the phase diagram of lower mantle and core materials , 2000 .