The quest for the next information processing technology

Fundamental physical considerations indicate that the scaling of devices that use electron charge as the information carrier will limit within the next one to two decades. The Nanoelectronics Research Initiative (NRI), a joint industry-government program, has been developed to fund university research seeking devices that utilize alternative physical information carriers or non-equilibrium switching mechanisms to continue the historical cost and performance trends of information technology. Three research centers have been established to pursue five research vectors that have been identified as critical to the effort to replace the electronic switch. A brief history and rationale for NRI is given and the projects currently underway are described in the context of the five research vectors.

[1]  Marco Polini,et al.  Pseudospin magnetism in graphene , 2007, 0707.1530.

[2]  R. Cavin,et al.  Research directions and challenges in nanoelectronics , 2006 .

[3]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[4]  David P. Norton,et al.  Dilute magnetic semiconducting oxides , 2004 .

[5]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[6]  Baowen Li,et al.  Thermal logic gates: computation with phonons. , 2007, Physical review letters.

[7]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[8]  Dmitri E. Nikonov,et al.  Power Dissipation in Spintronic Devices Out of Thermodynamic Equilibrium , 2006 .

[9]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[10]  Ralph K. Cavin,et al.  A Long-term View of Research Targets in Nanoelectronics , 2005 .

[11]  Ralph K. Cavin,et al.  Silicon Nanoelectronics and Beyond: Reflections from a Semiconductor Industry–government workshop , 2004 .

[12]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[13]  Shou-Cheng Zhang,et al.  Toward dissipationless spin transport in semiconductors , 2006, IBM J. Res. Dev..

[14]  Mihail C. Roco,et al.  National Nanotechnology Initiative - Past, Present, Future , 2007 .

[15]  X. Zu,et al.  Photoluminescence from TiO2/PMMA Nanocomposite Prepared by γ Radiation , 2006 .

[16]  Charles H. Bennett Notes on the history of reversible computation , 2000, IBM J. Res. Dev..

[17]  William A. Goddard,et al.  Handbook of Nanoscience, Engineering, and Technology , 2002 .

[18]  V. Metlushko,et al.  Magnetic QCA systems , 2005, Microelectron. J..

[19]  K.L. Wang,et al.  Efficiency of Spin-Wave Bus for Information Transmission , 2007, IEEE Transactions on Electron Devices.

[20]  R. Cavin,et al.  Nanodevices: charge of the heavy brigade. , 2008, Nature nanotechnology.

[21]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[22]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.