Inhibition of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry

In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.

[1]  G. Gao,et al.  Crystal structures of Nipah and Hendra virus fusion core proteins , 2006, The FEBS journal.

[2]  A. Moscona,et al.  The use of a quantitative fusion assay to evaluate HN-receptor interaction for human parainfluenza virus type 3. , 1999, Virology.

[3]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[4]  T. Weber,et al.  Mutations in Human Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase Causing Increased Receptor Binding Activity and Resistance to the Transition State Sialic Acid Analog 4-GU-DANA (Zanamivir) , 2003, Journal of Virology.

[5]  R. Lamb,et al.  Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Sanchez,et al.  A system for functional analysis of Ebola virus glycoprotein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[8]  C. Broder,et al.  A Neutralizing Human Monoclonal Antibody Protects against Lethal Disease in a New Ferret Model of Acute Nipah Virus Infection , 2009, PLoS pathogens.

[9]  Kelly J. Henrickson Parainfluenza Viruses , 2003, Clinical Microbiology Reviews.

[10]  S. Rusconi,et al.  Alpha complementation of LacZ in mammalian cells. , 1996, Nucleic acids research.

[11]  T. Matthews,et al.  Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Laura M. Palermo,et al.  Human Parainfluenza Virus Infection of the Airway Epithelium: Viral Hemagglutinin-Neuraminidase Regulates Fusion Protein Activation and Modulates Infectivity , 2009, Journal of Virology.

[13]  A. Moscona,et al.  Fusion properties of cells persistently infected with human parainfluenza virus type 3: participation of hemagglutinin-neuraminidase in membrane fusion , 1991, Journal of virology.

[14]  R. Lamb,et al.  A dual-functional paramyxovirus F protein regulatory switch segment , 2003, The Journal of cell biology.

[15]  S. Niewiesk,et al.  Diversifying animal models: the use of hispid cotton rats (Sigmodon hispidus) in infectious diseases , 2002, Laboratory animals.

[16]  S. Walmsley,et al.  Reassessment of enfuvirtide's role in the management of HIV-1 infection , 2008, Expert opinion on pharmacotherapy.

[17]  G. Loughlin,et al.  The Cell Biology of Acute Childhood Respiratory Disease: Therapeutic Implications , 2006, Pediatric Clinics of North America.

[18]  R. Lamb,et al.  Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion , 2001, The EMBO journal.

[19]  K. Chua,et al.  Treatment of acute Nipah encephalitis with ribavirin , 2001, Annals of neurology.

[20]  L. M. Palermo,et al.  Fusion Promotion by a Paramyxovirus Hemagglutinin-Neuraminidase Protein: pH Modulation of Receptor Avidity of Binding Sites I and II , 2007, Journal of Virology.

[21]  J. Schneider-Schaulies,et al.  Measles virus infection of the CNS: human disease, animal models, and approaches to therapy , 2010, Medical Microbiology and Immunology.

[22]  W. Bellini,et al.  Molecular characterization of Nipah virus, a newly emergent paramyxovirus. , 2000, Virology.

[23]  P. Collins,et al.  Respiratory Syncytial Virus Infection of Human Airway Epithelial Cells Is Polarized, Specific to Ciliated Cells, and without Obvious Cytopathology , 2002, Journal of Virology.

[24]  Oscar A. Negrete,et al.  EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus , 2005, Nature.

[25]  A. Gould,et al.  A morbillivirus that caused fatal disease in horses and humans. , 1995, Science.

[26]  I. Wilson,et al.  The influenza hemagglutinin precursor as an acid‐sensitive probe of the biosynthetic pathway. , 1987, The EMBO journal.

[27]  G. Kellogg,et al.  Molecular Determinants of Antiviral Potency of Paramyxovirus Entry Inhibitors , 2007, Journal of Virology.

[28]  P. Collins,et al.  Infection of Ciliated Cells by Human Parainfluenza Virus Type 3 in an In Vitro Model of Human Airway Epithelium , 2005, Journal of Virology.

[29]  M. Enserink Emerging infectious diseases. Nipah virus (or a cousin) strikes again. , 2004, Science.

[30]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[31]  J. White The first family of cell-cell fusion. , 2007, Developmental cell.

[32]  Laura M. Palermo,et al.  Viral Entry Inhibitors Targeted to the Membrane Site of Action , 2010, Journal of Virology.

[33]  M. Porotto,et al.  Triggering of Human Parainfluenza Virus 3 Fusion Protein (F) by the Hemagglutinin-Neuraminidase (HN) Protein: an HN Mutation Diminishes the Rate of F Activation and Fusion , 2003, Journal of Virology.

[34]  J. Zimmerberg,et al.  The Anti-Influenza Virus Agent 4-GU-DANA (Zanamivir) Inhibits Cell Fusion Mediated by Human Parainfluenza Virus and Influenza Virus HA , 2000, Journal of Virology.

[35]  K. Trueblood,et al.  Correlation of Internal Torsional Motion with Overall Molecular Motion in Crystals , 1998 .

[36]  V. Guillaume,et al.  Nipah Virus: Vaccination and Passive Protection Studies in a Hamster Model , 2004, Journal of Virology.

[37]  V S Lamzin,et al.  Automated refinement of protein models. , 1993, Acta crystallographica. Section D, Biological crystallography.

[38]  J. Guarner,et al.  Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. , 2002, The American journal of pathology.

[39]  W. Bellini,et al.  Molecular biology of Hendra and Nipah viruses. , 2001, Microbes and infection.

[40]  D. Kuritzkes,et al.  Enfuvirtide Cerebrospinal Fluid (CSF) Pharmacokinetics and Potential use in Defining CSF HIV-1 Origin , 2008, Antiviral therapy.

[41]  N. Tordo,et al.  Experimental Infection of Squirrel Monkeys with Nipah Virus , 2010, Emerging infectious diseases.

[42]  H. Field,et al.  Human Hendra Virus Encephalitis Associated with Equine Outbreak, Australia, 2008 , 2010, Emerging infectious diseases.

[43]  D. Paterson,et al.  Fatal encephalitis due to novel paramyxovirus transmitted from horses , 1997, The Lancet.

[44]  M. Fornabaio,et al.  Paramyxovirus Receptor-Binding Molecules: Engagement of One Site on the Hemagglutinin-Neuraminidase Protein Modulates Activity at the Second Site , 2006, Journal of Virology.

[45]  M. Enserink Nipah Virus (or a Cousin) Strikes Again , 2004, Science.

[46]  S. Spragg Biophysical chemistry , 1979, Nature.

[47]  Peter Briggs,et al.  A graphical user interface to the CCP4 program suite. , 2003, Acta crystallographica. Section D, Biological crystallography.

[48]  R. Buckland,et al.  Inhibition of measles virus infection and fusion with peptides corresponding to the leucine zipper region of the fusion protein. , 1997, The Journal of general virology.

[49]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[50]  T. Kunkel Rapid and efficient site-specific mutagenesis without phenotypic selection. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Porotto,et al.  Influence of the Human Parainfluenza Virus 3 Attachment Protein's Neuraminidase Activity on Its Capacity To Activate the Fusion Protein , 2005, Journal of Virology.

[52]  C. Broder,et al.  Feline Model of Acute Nipah Virus Infection and Protection with a Soluble Glycoprotein-Based Subunit Vaccine , 2006, Journal of Virology.

[53]  M. Fornabaio,et al.  Inhibition of Hendra Virus Fusion , 2006, Journal of Virology.

[54]  P. Bates,et al.  Heptad Repeat 2-Based Peptides Inhibit Avian Sarcoma and Leukosis Virus Subgroup A Infection and Identify a Fusion Intermediate , 2004, Journal of Virology.

[55]  M. Porotto,et al.  Kinetic Dependence of Paramyxovirus Entry Inhibition , 2009, Journal of Virology.

[56]  M. Fornabaio,et al.  A Second Receptor Binding Site on Human Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase Contributes to Activation of the FusionMechanism , 2007, Journal of Virology.

[57]  L. Aschenbrenner,et al.  A recombinant sialidase fusion protein effectively inhibits human parainfluenza viral infection in vitro and in vivo. , 2010, The Journal of infectious diseases.

[58]  T. Morrison,et al.  Interaction of Peptides with Sequences from the Newcastle Disease Virus Fusion Protein Heptad Repeat Regions , 1999, Journal of Virology.

[59]  J. Bartlett Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children , 2004 .

[60]  V. Guillaume,et al.  Antibody Prophylaxis and Therapy against Nipah Virus Infection in Hamsters , 2006, Journal of Virology.

[61]  R. Lamb,et al.  A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. , 1998, Virology.

[62]  Vanessa R. Melanson,et al.  Glycoprotein interactions in paramyxovirus fusion. , 2009, Future virology.

[63]  J. Kaplan Emerging Infectious Diseases Emerging Infectious Diseases , 1995 .

[64]  R. Lamb,et al.  Structural basis for paramyxovirus-mediated membrane fusion. , 1999, Molecular cell.

[65]  C. Broder,et al.  Development of an Acute and Highly Pathogenic Nonhuman Primate Model of Nipah Virus Infection , 2010, PloS one.

[66]  E. Singer,et al.  Neurologic presentations of AIDS. , 2010, Neurologic clinics.

[67]  Winfried Weissenhorn,et al.  Virus membrane fusion , 2007, FEBS Letters.

[68]  Y. Shai,et al.  A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus‐cell fusion: an emerging similarity with functional domains of other viruses. , 1995, The EMBO journal.

[69]  P S Kim,et al.  Mechanisms of viral membrane fusion and its inhibition. , 2001, Annual review of biochemistry.

[70]  R. Lamb,et al.  Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures , 2005, Virology.

[71]  S. Harrison Viral membrane fusion , 2008, Nature Structural &Molecular Biology.

[72]  P. Loth,et al.  A golden hamster model for human acute Nipah virus infection. , 2003, The American journal of pathology.

[73]  R. Compans,et al.  Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection. , 1996, Virology.

[74]  V. Guillaume,et al.  Acute Hendra virus infection: Analysis of the pathogenesis and passive antibody protection in the hamster model. , 2009, Virology.

[75]  D S Moss,et al.  Main-chain bond lengths and bond angles in protein structures. , 1993, Journal of molecular biology.

[76]  M. Whitt,et al.  Simulating Henipavirus Multicycle Replication in a Screening Assay Leads to Identification of a Promising Candidate for Therapy , 2009, Journal of Virology.

[77]  R. Dutch,et al.  Viral entry mechanisms: the increasing diversity of paramyxovirus entry , 2009, The FEBS journal.

[78]  M. Lawrence,et al.  Inhibition of Parainfluenza Virus Type 3 and Newcastle Disease Virus Hemagglutinin-Neuraminidase Receptor Binding: Effect of Receptor Avidity and Steric Hindrance at the Inhibitor Binding Sites , 2004, Journal of Virology.

[79]  J. K. Young,et al.  Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR, and molecular modeling. , 1997, Virology.

[80]  H. Field,et al.  Nipah virus: a recently emergent deadly paramyxovirus. , 2000, Science.

[81]  M. Root,et al.  Asymmetric Deactivation of HIV-1 gp41 following Fusion Inhibitor Binding , 2009, PLoS pathogens.

[82]  M. Porotto,et al.  Human Parainfluenza Virus Type 3 HN-Receptor Interaction: Effect of 4-Guanidino-Neu5Ac2en on a Neuraminidase-Deficient Variant , 2001, Journal of Virology.

[83]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[84]  Adeeba Kamarulzaman,et al.  Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia , 1999, The Lancet.

[85]  Y H Chen,et al.  Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. , 1974, Biochemistry.

[86]  H. Weingartl,et al.  Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro , 2009, Thrombosis and Haemostasis.

[87]  H. Edelhoch,et al.  Spectroscopic determination of tryptophan and tyrosine in proteins. , 1967, Biochemistry.

[88]  D. Griffin Emergence and re-emergence of viral diseases of the central nervous system , 2009, Progress in Neurobiology.

[89]  M L Johnson,et al.  Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. , 1981, Biophysical journal.

[90]  D. Lambert,et al.  Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[91]  John P. Moore,et al.  Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency , 2009, Proceedings of the National Academy of Sciences.

[92]  Kathryn L. Schornberg,et al.  Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. , 2008, Critical reviews in biochemistry and molecular biology.

[93]  J. Sejvar,et al.  Long‐term neurological and functional outcome in Nipah virus infection , 2007, Annals of neurology.

[94]  Arthur J. Rowe,et al.  Analytical ultracentrifugation in biochemistry and polymer science , 1992 .

[95]  J. Bresee,et al.  Nipah Virus Encephalitis Reemergence, Bangladesh , 2004, Emerging infectious diseases.

[96]  J. A. Comer,et al.  Nipah virus outbreak with person-to-person transmission in a district of Bangladesh, 2007 , 2010, Epidemiology and Infection.

[97]  Stephen C. Blacklow,et al.  A trimeric structural domain of the HIV-1 transmembrane glycoprotein , 1995, Nature Structural Biology.