Abstract rendering: out-of-core rendering for information visualization

As visualization is applied to larger data sets residing in more diverse hardware environments, visualization frameworks need to adapt. Rendering techniques are currently a major limiter since they tend to be built around central processing with all of the geometric data present. This is not a fundamental requirement of information visualization. This paper presents Abstract Rendering (AR), a technique for eliminating the centralization requirement while preserving some forms of interactivity. AR is based on the observation that pixels are fundamentally bins, and that rendering is essentially a binning process on a lattice of bins. By providing a more flexible binning process, the majority of rendering can be done with the geometric information stored out-of-core. Only the bin representations need to reside in memory. This approach enables: (1) rendering on large datasets without requiring large amounts of working memory, (2) novel and useful control over image composition, (3) a direct means of distributing the rendering task across processes, and (4) high-performance interaction techniques on large datasets. This paper introduces AR in a theoretical context, provides an overview of an implementation, and discusses how it has been applied to large-scale data visualization problems.

[1]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[2]  Shiaofen Fang,et al.  Image-based transfer function design for data exploration in volume visualization , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[3]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[4]  Benjamin B. Bederson,et al.  Toolkit design for interactive structured graphics , 2004, IEEE Transactions on Software Engineering.

[5]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[6]  Kwan-Liu Ma,et al.  Visual Analysis of Inter-Process Communication for Large-Scale Parallel Computing , 2009, IEEE Transactions on Visualization and Computer Graphics.

[7]  Victoria Interrante,et al.  Weaving Versus Blending: a quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color. , 2006, IEEE Transactions on Visualization and Computer Graphics.

[8]  Hadley Wickham,et al.  A Layered Grammar of Graphics , 2010 .

[9]  Joseph A. Cottam,et al.  Automatic Application of the Data-State Model in Data-Flow Contexts , 2010, 2010 14th International Conference Information Visualisation.

[10]  Tom Davis,et al.  Opengl programming guide: the official guide to learning opengl , 1993 .

[11]  Mark Bailey,et al.  The Grammar of Graphics , 2007, Technometrics.

[12]  Jeffrey Heer,et al.  imMens: Real‐time Visual Querying of Big Data , 2013, Comput. Graph. Forum.

[13]  Jeffrey Heer,et al.  Software Design Patterns for Information Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  Jeffrey Heer,et al.  Protovis: A Graphical Toolkit for Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[15]  Joseph A. Cottam,et al.  Design and implementation of a stream-based visualization language , 2011 .

[16]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[17]  M. Cooper,et al.  Revealing structure within clustered parallel coordinates displays , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[18]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[19]  Victoria Interrante,et al.  Effectively visualizing multi-valued flow data using color and texture , 2003, IEEE Visualization, 2003. VIS 2003..

[20]  Bruce Hendrickson,et al.  Knowledge Mining With VxInsight: Discovery Through Interaction , 1998, Journal of Intelligent Information Systems.

[21]  Paul Mackerras,et al.  Data shaders , 1993, Proceedings Visualization '93.

[22]  Joseph A. Cottam,et al.  Extended Assortitivity and the Structure in the Open Source Development Community , 2008 .

[23]  Wolfgang Berger,et al.  A Multi-Threading Architecture to Support Interactive Visual Exploration , 2009, IEEE Transactions on Visualization and Computer Graphics.

[24]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[25]  Andrew Lumsdaine,et al.  Interpreting large visual similarity matrices , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[26]  R. Grossman,et al.  Graph-theoretic scagnostics , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[27]  Niklas Elmqvist,et al.  Towards Utilizing GPUs in Information Visualization: A Model and Implementation of Image-Space Operations , 2009, IEEE Transactions on Visualization and Computer Graphics.