KPZ formula derived from Liouville heat kernel

In this paper, we establish the Knizhnik--Polyakov--Zamolodchikov (KPZ) formula of Liouville quantum gravity, using the heat kernel of Liouville Brownian motion. This derivation of the KPZ formula was first suggested by F. David and M. Bauer in order to get a geometrically more intrinsic way of measuring the dimension of sets in Liouville quantum gravity. We also provide a careful study of the (no)-doubling behaviour of the Liouville measures in the appendix, which is of independent interest.

[1]  J. Kahane Sur le chaos multiplicatif , 1985 .

[2]  Juhan Aru KPZ relation does not hold for the level lines and $$\hbox {SLE}_\kappa $$SLEκ flow lines of the Gaussian free field , 2013, 1312.1324.

[3]  O. Zeitouni,et al.  Liouville heat kernel: Regularity and bounds , 2014, 1406.0491.

[4]  KPZ relation does not hold for the level lines and the SLE$_\kappa$ flow lines of the Gaussian free field , 2013 .

[5]  J. Distler,et al.  Conformal Field Theory and 2D Quantum Gravity , 1989 .

[6]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[7]  I. Benjamini,et al.  KPZ in One Dimensional Random Geometry of Multiplicative Cascades , 2008, 0806.1347.

[8]  Romain Allez,et al.  Lognormal $${\star}$$ -scale invariant random measures , 2011, 1102.1895.

[9]  Scott Sheffield,et al.  Quantum Loewner Evolution , 2013, 1312.5745.

[10]  F. David,et al.  Another derivation of the geometrical KPZ relations , 2008, 0810.2858.

[11]  V. Vargas,et al.  Gaussian Multiplicative Chaos and KPZ Duality , 2012, Communications in Mathematical Physics.

[12]  Naotaka Kajino,et al.  Continuity and estimates of the Liouville heat kernel with applications to spectral dimensions , 2014, 1407.3240.

[13]  S. Sheffield Gaussian free fields for mathematicians , 2003, math/0312099.

[14]  Jean-François Le Gall,et al.  The topological structure of scaling limits of large planar maps , 2007 .

[15]  N. Berestycki Diffusion in planar Liouville quantum gravity , 2013, 1301.3356.

[16]  V. Vargas,et al.  Renormalization of Critical Gaussian Multiplicative Chaos and KPZ formula , 2012, 1212.0529.

[17]  Liouville Field Theory — A decade after the revolution , 2004, hep-th/0402009.

[18]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[19]  F. David CONFORMAL FIELD THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE , 1988 .

[20]  M. Ledoux The concentration of measure phenomenon , 2001 .

[21]  Vincent Vargas,et al.  Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.

[22]  V. Vargas,et al.  On the heat kernel and the Dirichlet form of Liouville Brownian motion , 2013, 1302.6050.

[23]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[24]  C. Garban Quantum gravity and the KPZ formula , 2012, 1206.0212.

[25]  V. Vargas,et al.  Liouville Brownian motion , 2013, 1301.2876.

[26]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[27]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[28]  V. Vargas,et al.  KPZ formula for log-infinitely divisible multifractal random measures , 2008, 0807.1036.

[29]  Scott Sheffield,et al.  Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation , 2012, Communications in Mathematical Physics.

[30]  Quansheng Liu Sur certaines martingales de Mandelbrot , 1999 .

[31]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[32]  V. Vargas,et al.  Spectral Dimension of Liouville Quantum Gravity , 2013, 1305.0154.