Simulation-Driven Reachability Using Matrix Measures

Simulation-driven verification can provide formal safety guarantees for otherwise intractable nonlinear and hybrid system models. A key step in simulation-driven algorithms is to compute the reach set overapproximations from a set of initial states through numerical simulations and sensitivity analysis. This article addresses this problem by providing algorithms for computing discrepancy functions as the upper bound on the sensitivity, that is, the rate at which trajectories starting from neighboring states converge or diverge. The algorithms rely on computing local bounds on matrix measures as the exponential change rate of the discrepancy function. We present two techniques to compute the matrix measures under different norms: regular Euclidean norm or Euclidean norm under coordinate transformation, such that the exponential rate of the discrepancy function, and therefore, the conservativeness of the overapproximation, is locally minimized. The proposed algorithms enable automatic reach set computations of general nonlinear systems and have been successfully used on several challenging benchmark models. All proposed algorithms for computing discrepancy functions give soundness and relative completeness of the overall simulation-driven safety-bounded verification algorithm. We present a series of experiments to illustrate the accuracy and performance of the algorithms.

[1]  Mahesh Viswanathan,et al.  C2E2: A Verification Tool for Stateflow Models , 2015, TACAS.

[2]  Sriram Sankaranarayanan,et al.  Simulation-guided lyapunov analysis for hybrid dynamical systems , 2014, HSCC.

[3]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[4]  Angelika Bayer,et al.  Ellipsoidal Calculus For Estimation And Control , 2016 .

[5]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[6]  Zhenqi Huang,et al.  Proofs from simulations and modular annotations , 2014, HSCC.

[7]  George J. Pappas,et al.  Trajectory Based Verification Using Local Finite-Time Invariance , 2009, HSCC.

[8]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[9]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[10]  Wei Chen,et al.  dReach: δ-Reachability Analysis for Hybrid Systems , 2015, TACAS.

[11]  John N. Maidens,et al.  Reachability Analysis of Nonlinear Systems Using Matrix Measures , 2015, IEEE Transactions on Automatic Control.

[12]  Manuel Mazo,et al.  Symbolic Models for Nonlinear Control Systems Without Stability Assumptions , 2010, IEEE Transactions on Automatic Control.

[13]  Marco Bozzano,et al.  Formal Design and Safety Analysis of AIR6110 Wheel Brake System , 2015, CAV.

[14]  G. Leonov,et al.  Lyapunov’s direct method in estimates of topological entropy , 1998 .

[15]  Insup Lee,et al.  Robust Test Generation and Coverage for Hybrid Systems , 2007, HSCC.

[16]  Oded Maler,et al.  Systematic Simulation Using Sensitivity Analysis , 2007, HSCC.

[17]  Matthias Althoff,et al.  Formal Analysis of Drum-Boiler Units to Maximize the Load-Following Capabilities of Power Plants , 2016, IEEE Transactions on Power Systems.

[18]  Zhenqi Huang,et al.  Invariant Verification of Nonlinear Hybrid Automata Networks of Cardiac Cells , 2014, CAV.

[19]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[20]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[21]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[22]  Alexandre Donzé,et al.  Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems , 2010, CAV.

[23]  Robert J. Simmons,et al.  Proofs from Tests , 2008, IEEE Transactions on Software Engineering.

[24]  Antoine Girard,et al.  SpaceEx: Scalable Verification of Hybrid Systems , 2011, CAV.

[25]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[26]  Paulo Tabuada,et al.  Approximately Bisimilar Symbolic Models for Incrementally Stable Switched Systems , 2008, IEEE Transactions on Automatic Control.

[27]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[28]  Chuchu Fan,et al.  Bounded Verification with On-the-Fly Discrepancy Computation , 2015, ATVA.

[29]  Mahesh Viswanathan,et al.  Verification of annotated models from executions , 2013, 2013 Proceedings of the International Conference on Embedded Software (EMSOFT).

[30]  Yi Deng,et al.  STRONG: A Trajectory-Based Verification Toolbox for Hybrid Systems , 2013, QEST.

[31]  James Kapinski,et al.  Locally optimal reach set over-approximation for nonlinear systems , 2016, 2016 International Conference on Embedded Software (EMSOFT).

[32]  Mahesh Viswanathan,et al.  Meeting a Powertrain Verification Challenge , 2015, CAV.

[33]  Bruce H. Krogh,et al.  Numerically-aided Deductive Safety Proof for a Powertrain Control System , 2015, NSV.

[34]  Mahesh Viswanathan,et al.  Temporal Precedence Checking for Switched Models and Its Application to a Parallel Landing Protocol , 2014, FM.

[35]  Rajeev Alur,et al.  Modeling and Verification of a Dual Chamber Implantable Pacemaker , 2012, TACAS.

[36]  Xin Chen,et al.  Flow*: An Analyzer for Non-linear Hybrid Systems , 2013, CAV.

[37]  Taher Lotfi,et al.  Norms of Interval Matrices , 2011 .

[38]  Rupak Majumdar,et al.  From Tests to Proofs , 2009, TACAS.

[39]  A. Papachristodoulou,et al.  Analysis of Non-polynomial Systems using the Sum of Squares Decomposition , 2005 .

[40]  Eduardo Sontag Contractive Systems with Inputs , 2010 .

[41]  Antonis Papachristodoulou,et al.  Dynamical system decomposition for efficient, sparse analysis , 2010, 49th IEEE Conference on Decision and Control (CDC).

[42]  Thao Dang,et al.  NLTOOLBOX: A Library for Reachability Computation of Nonlinear Dynamical Systems , 2013, ATVA.

[43]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[44]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..