On Clustering Induced Voronoi Diagrams

In this paper, we study a generalization of the classical Voronoi diagram, called the clustering induced Voronoi diagram (CIVD). Different from the traditional model, CIVD takes as its sites the power set $U$ of an input set $P$ of objects. For each subset $C$ of $P$, CIVD uses an influence function $F(C,q)$ to measure the total (or joint) influence of all objects in $C$ on an arbitrary point $q$ in the space $\mathbb{R}^d$ and determines the influence-based Voronoi cell in $\mathbb{R}^d$ for $C$. This generalized model offers a number of new features (e.g., simultaneous clustering and space partition) to the Voronoi diagram which are useful in various new applications. We investigate the general conditions for the influence function which ensure the existence of a small-size (e.g., nearly linear) approximate CIVD for a set $P$ of $n$ points in $\mathbb{R}^d$ for some fixed $d$. To construct CIVD, we first present a stand-alone new technique, called approximate influence (AI) decomposition, for the genera...