Nonlinear Stationary States in PT-Symmetric Lattices

In the present work we examine both the linear and nonlinear properties of two related parity-time (PT)-symmetric systems of the discrete nonlinear Schrodinger (dNLS) type. First, we examine the parameter range for which the finite PT-dNLS chains have real eigenvalues and PT-symmetric linear eigenstates. We develop a systematic way of analyzing the nonlinear stationary states with the implicit function theorem. Second, we consider the case when a finite PT-dNLS chain is embedded as a defect in the infinite dNLS lattice. We show that the stability intervals for a finite PT-dNLS defect in the infinite dNLS lattice are wider than in the case of an isolated PT-dNLS chain. We also prove existence of localized stationary states (discrete solitons) in the analogue of the anticontinuum limit for the dNLS equation. Numerical computations illustrate the existence of nonlinear stationary states as well as the stability and saddle-center bifurcations of discrete solitons.

[1]  P. Kevrekidis,et al.  Asymmetric wave propagation through nonlinear PT-symmetric oligomers , 2012, 1202.4483.

[2]  J. G. Muga,et al.  Physical realization of -symmetric potential scattering in a planar slab waveguide , 2005, 1706.04056.

[3]  Panayotis G. Kevrekidis,et al.  The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives , 2009 .

[4]  P. Kevrekidis,et al.  -symmetric lattices with spatially extended gain/loss are generically unstable , 2012, 1211.5815.

[5]  Robert S. MacKay,et al.  Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators , 1994 .

[6]  Ali Mostafazadeh,et al.  Pseudo-Hermitian Representation of Quantum Mechanics , 2008, 0810.5643.

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  V. Konotop,et al.  Solitons in PT-symmetric nonlinear lattices , 2011, 1104.0276.

[9]  P. Kevrekidis,et al.  Eigenstates and instabilities of chains with embedded defects. , 2012, Chaos.

[10]  I. V. Barashenkov,et al.  Breathers in PT-symmetric optical couplers , 2012, 1211.1835.

[11]  Y. Kivshar,et al.  Optical solitons in $\mathcal{PT}$-symmetric nonlinear couplers with gain and loss , 2012, 1207.5252.

[12]  Panayotis G. Kevrekidis,et al.  The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives , 2009 .

[13]  R. El-Ganainy,et al.  Optical solitons in PT periodic potentials , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[14]  P. Kevrekidis,et al.  PT-symmetric oligomers: analytical solutions, linear stability, and nonlinear dynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[16]  D. Leykam,et al.  Discrete vortex solitons and parity time symmetry. , 2013, Optics letters.

[17]  Y. Kivshar,et al.  Binary parity-time-symmetric nonlinear lattices with balanced gain and loss. , 2010, Optics letters.

[18]  H. Korsch,et al.  Quantum-classical correspondence for a non-Hermitian Bose-Hubbard dimer , 2010, 1003.3355.

[19]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[20]  C. Trunk,et al.  PT symmetric, Hermitian and P-self-adjoint operators related to potentials in PT quantum mechanics , 2011, 1108.5923.

[21]  B. Malomed,et al.  Solitons in a chain of parity-time-invariant dimers. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  B. Malomed,et al.  Nonlinear -symmetric plaquettes , 2012, 1204.5530.

[23]  Jianke Yang,et al.  Stability analysis for solitons in PT-symmetric optical lattices , 2012, 1201.2696.

[24]  D. Pelinovsky,et al.  Internal modes of discrete solitons near the anti-continuum limit of the dNLS equation , 2010, 1005.5087.

[25]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[26]  Rodislav Driben,et al.  Stability of solitons in parity-time-symmetric couplers. , 2011, Optics letters.

[27]  Dmitry E. Pelinovsky,et al.  Stability of discrete solitons in nonlinear Schrödinger lattices , 2005 .

[28]  V. Konotop,et al.  Nonlinear modes in finite-dimensional PT-symmetric systems. , 2012, Physical review letters.

[29]  Jianke Yang No stability switching at saddle-node bifurcations of solitary waves in generalized nonlinear Schrödinger equations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Bernard Kress,et al.  Free space diffraction on active gratings with balanced phase and gain/loss modulations. , 2012, Optics express.

[31]  G. L. Alfimov,et al.  On classification of intrinsic localized modes for the discrete nonlinear Schrödinger equation , 2004 .

[32]  Oleg N. Kirillov PT-symmetry, indefinite damping and dissipation-induced instabilities , 2011, 1110.0018.

[33]  Y. Kivshar,et al.  Nonlocality in PT-symmetric waveguide arrays with gain and loss. , 2012, Optics letters.

[34]  Guido Schneider,et al.  On the validity of the variational approximation in discrete nonlinear Schrödinger equations , 2012 .

[35]  C. Trunk,et al.  On domains of symmetric operators related to −y″(x) + (− 1)nx2ny(x) , 2009, 0911.1284.

[36]  University of Central Florida,et al.  Unidirectional nonlinear PT-symmetric optical structures , 2010, 1005.5189.

[37]  Bifurcations in resonance widths of an open Bose-Hubbard dimer , 2006, cond-mat/0602626.

[38]  I. V. Barashenkov,et al.  PT-symmetry breaking in a necklace of coupled optical waveguides , 2013, 1311.4123.

[39]  Ragnar Fleischmann,et al.  Exponentially fragile PT symmetry in lattices with localized eigenmodes. , 2009, Physical review letters.

[40]  Y. Kivshar,et al.  Nonlinear suppression of time reversals in PT-symmetric optical couplers , 2010, 1009.5428.

[41]  M. Znojil What is PT symmetry , 2001 .