A quantum-mechanical description of macrocyclic ring rotation in benzylic amide.

Catenanes can undergo rotation of one ring through the cavity of the other. Since macroscopic and molecular properties must clearly vary with the relative positions and orientations of the interlocked components, a complete understanding of the way that the rings rotate is of considerable importance. Here we show that low-dimensional quantum-mechanical modeling can yield rate constants and barriers similar to those obtained by temperature-dependent nuclear magnetic resonance experiments. Data from both non-hydrogen bond disrupting (e.g. CDCl3) and hydrogen bond disrupting (e.g. [D6]DMSO) solvents are well reproduced demonstrating the validity of the model. The successful simulation of the rates of circumrotations by entirely harmonic transition state theory originates from the description of the anharmonic levels of the systems through an effective harmonic frequency, not very different from twice the zero point energy. The nature of the model makes it extendable, in principle, to the calculation of properties dependent upon circumrotational activity.

[1]  F. Zerbetto,et al.  Comparison of synchronous and asynchronous hydrogen transfer mechanisms in free-base porphyrins☆ , 1989 .

[2]  Jens C Skou,et al.  The Identification of the Sodium-Potassium Pump (Nobel Lecture). , 1998, Angewandte Chemie.

[3]  P. Boyer,et al.  Energy, Life, and ATP (Nobel Lecture). , 1998, Angewandte Chemie.

[4]  John E Walker,et al.  ATP Synthesis by Rotary Catalysis (Nobel lecture). , 1998, Angewandte Chemie.

[5]  A. Troisi,et al.  Reducing Molecular Shuttling to a Single Dimension. , 2000, Angewandte Chemie.

[6]  Piersandro Pallavicini,et al.  ELECTROCHEMICALLY SWITCHED ANION TRANSLOCATION IN A MULTICOMPONENT COORDINATION COMPOUND , 1997 .

[7]  R. Birge Photophysics and molecular electronic applications of the rhodopsins. , 1990, Annual review of physical chemistry.

[8]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[9]  Itamar Willner,et al.  Photoswitchable Biomaterials: En Route to Optobioelectronic Systems , 1997 .

[10]  Sean C. Smith,et al.  Theory of Unimolecular and Recombination Reactions , 1990 .

[11]  Francesco Zerbetto,et al.  Controlling the Frequency of Macrocyclic Ring Rotation in Benzylic Amide [2]Catenanes , 1998 .

[12]  Christopher J. Richards,et al.  A metallocene molecular gear , 1997 .

[13]  Jeffrey S. Moore,et al.  Design and Synthesis of a “Molecular Turnstile” , 1995 .

[14]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[15]  Francesco Zerbetto,et al.  How do benzylic amide [2]catenane rings rotate? , 1999 .

[16]  Jens C. Skou Die Identifizierung der Natrium-Kalium-Pumpe (Nobel-Vortrag) , 1998 .

[17]  M. Halpern,et al.  The torsional spectrum of CD3CD3 , 1988 .

[18]  F. Zerbetto,et al.  Theoretical analysis of the vibrational structure of the T <-- N transition in ethylene , 1989 .

[19]  F. Zerbetto,et al.  Tunneling splittings from ab initio data: indoline, a test case , 1995 .

[20]  F. Zerbetto,et al.  New assignment of the vibrational structure of the V ← N transition in ethylene-d4 , 1990 .

[21]  Atsushi Ikeda,et al.  Molecular Design of a “Molecular Syringe” Mimic for Metal Cations Using a 1,3-Alternate Calix[4]arene Cavity , 1997 .

[22]  V. Rotello,et al.  ELECTROCHEMICAL CONTROL OF RECOGNITION PROCESSES. A THREE-COMPONENT MOLECULAR SWITCH , 1997 .

[23]  F. Zerbetto,et al.  Dynamics of molecular inversion: An instanton approach , 1995 .

[24]  P. Boyer Energie, Leben und ATP (Nobel-Vortrag) , 1998 .

[25]  John E. Walker,et al.  ATP‐Synthese durch Rotations‐Katalyse (Nobel‐Vortrag) , 1998 .