Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits

Layer 5 thick tufted pyramidal cells (TTCs) in the neocortex are particularly electrically complex, owing to their highly excitable dendrites. The interplay between dendritic nonlinearities and recurrent cortical microcircuit activity in shaping network response is largely unknown. We simulated detailed conductance-based models of TTCs forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. TTCs microcircuits significantly amplified brief thalamocortical inputs; this cortical gain was mediated by back-propagation activated N-methyl-d-aspartate depolarizations and dendritic back-propagation-activated Ca2+ spike firing, ignited by the coincidence of thalamic-activated somatic spike and local dendritic synaptic inputs, originating from the cortical microcircuit. Surprisingly, dendritic nonlinearities in TTCs microcircuits linearly multiplied thalamic inputs—amplifying them while maintaining input selectivity. Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex.

[1]  Li I. Zhang,et al.  Linear Transformation of Thalamocortical input by Intracortical Excitation , 2013, Nature Neuroscience.

[2]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[3]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[4]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[5]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[6]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[7]  Guangying K. Wu,et al.  Defining cortical frequency tuning with recurrent excitatory circuitry , 2007, Nature Neuroscience.

[8]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[9]  Taro Kiritani,et al.  Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex , 2010, Nature Neuroscience.

[10]  J. Magee,et al.  Pathway Interactions and Synaptic Plasticity in the Dendritic Tuft Regions of CA1 Pyramidal Neurons , 2009, Neuron.

[11]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[12]  Wolfgang Maass,et al.  Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[13]  M. Larkum,et al.  The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition , 2012, Science.

[14]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[15]  Christine M Constantinople,et al.  Deep Cortical Layers Are Activated Directly by Thalamus , 2013, Science.

[16]  Henry Markram,et al.  Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties , 2011, PLoS Comput. Biol..

[17]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[18]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[19]  M. Larkum,et al.  NMDA spikes enhance action potential generation during sensory input , 2014, Nature Neuroscience.

[20]  Terrence J. Sejnowski,et al.  Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism , 1994, Journal of Computational Neuroscience.

[21]  Mu Zhou,et al.  Intracortical Multiplication of Thalamocortical Signals in Mouse Auditory Cortex , 2013, Nature Neuroscience.

[22]  Idan Segev,et al.  Losing the battle but winning the war: game theoretic analysis of the competition between motoneurons innervating a skeletal muscle , 2012, Front. Comput. Neurosci..

[23]  D. Johnston,et al.  Temporal synchrony and gamma to theta power conversion in the dendrites of CA1 pyramidal neurons , 2013, Nature Neuroscience.

[24]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[25]  H. S. Meyer,et al.  Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[26]  Randy M. Bruno,et al.  Effects and Mechanisms of Wakefulness on Local Cortical Networks , 2011, Neuron.

[27]  C. Koch,et al.  Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[29]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[30]  Henry Markram,et al.  A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data , 2007, Front. Neurosci..

[31]  Idan Segev,et al.  Principles Governing the Operation of Synaptic Inhibition in Dendrites , 2012, Neuron.

[32]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[33]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[34]  Stephen R. Williams,et al.  Pathway‐specific use‐dependent dynamics of excitatory synaptic transmission in rat intracortical circuits , 2007, The Journal of physiology.

[35]  P A Salin,et al.  Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex. , 1996, Journal of neurophysiology.

[36]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[37]  W. Maass,et al.  State-dependent computations: spatiotemporal processing in cortical networks , 2009, Nature Reviews Neuroscience.

[38]  Yitzhak Schiller,et al.  NMDA receptor-mediated dendritic spikes and coincident signal amplification , 2001, Current Opinion in Neurobiology.

[39]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[40]  Bartlett W. Mel,et al.  Encoding and Decoding Bursts by NMDA Spikes in Basal Dendrites of Layer 5 Pyramidal Neurons , 2009, The Journal of Neuroscience.

[41]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[42]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[43]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[44]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[45]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[46]  Paul A. Rhodes,et al.  The Properties and Implications of NMDA Spikes in Neocortical Pyramidal Cells , 2006, The Journal of Neuroscience.

[47]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[48]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[49]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[50]  P. Poirazi,et al.  Induction and modulation of persistent activity in a layer V PFC microcircuit model , 2013, Front. Neural Circuits.

[51]  Johannes J. Letzkus,et al.  Cortical feed-forward networks for binding different streams of sensory information , 2006, Nature Neuroscience.

[52]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[53]  Stephen D. Van Hooser Similarity and Diversity in Visual Cortex: Is There a Unifying Theory of Cortical Computation? , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[54]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[55]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[56]  Shimon Ullman,et al.  Cortical Circuitry Implementing Graphical Models , 2009, Neural Computation.

[57]  B. Sakmann,et al.  Developmental Switch in the Short-Term Modification of Unitary EPSPs Evoked in Layer 2/3 and Layer 5 Pyramidal Neurons of Rat Neocortex , 1999, The Journal of Neuroscience.

[58]  Stephen D Van Hooser,et al.  Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis). , 2005, Journal of neurophysiology.

[59]  Henry Markram,et al.  Coding of temporal information by activity-dependent synapses. , 2002, Journal of neurophysiology.

[60]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[61]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[62]  Idan Segev,et al.  Contribution of Intracolumnar Layer 2/3-to-Layer 2/3 Excitatory Connections in Shaping the Response to Whisker Deflection in Rat Barrel Cortex , 2013, Cerebral cortex.

[63]  Henry Markram,et al.  Preserving axosomatic spiking features despite diverse dendritic morphology. , 2013, Journal of neurophysiology.

[64]  Fiona E. N. LeBeau,et al.  Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. , 2005, Journal of neurophysiology.

[65]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Nicholas T. Carnevale,et al.  ModelDB: A Database to Support Computational Neuroscience , 2004, Journal of Computational Neuroscience.

[67]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[68]  Idan Segev,et al.  Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving in vitro and in vivo experimental observations , 2007, Proceedings of the National Academy of Sciences.

[69]  Bert Sakmann,et al.  Postnatal development of synaptic transmission in local networks of L5A pyramidal neurons in rat somatosensory cortex , 2007, The Journal of physiology.

[70]  James G. King,et al.  Intrinsic morphological diversity of thick‐tufted layer 5 pyramidal neurons ensures robust and invariant properties of in silico synaptic connections , 2012, The Journal of physiology.

[71]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[72]  Michael W. Reimann,et al.  A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents , 2013, Neuron.

[73]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Shaul Hestrin,et al.  Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex , 1992, Neuron.

[75]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[76]  M. Carandini,et al.  Inhibition dominates sensory responses in awake cortex , 2012, Nature.

[77]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[78]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[79]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[80]  N. Seidah,et al.  Regulation by gastric acid of the processing of progastrin‐derived peptides in rat antral mucosa , 1997, The Journal of physiology.

[81]  K. Martin,et al.  A biologically realistic cortical model of eye movement control in reading. , 2010, Psychological review.

[82]  Randy M Bruno,et al.  Synchrony in sensation , 2011, Current Opinion in Neurobiology.

[83]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[84]  Adam G. Carter,et al.  GABAB Receptor Modulation of Voltage-Sensitive Calcium Channels in Spines and Dendrites , 2011, The Journal of Neuroscience.

[85]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[86]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[87]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[88]  Jakob Heinzle,et al.  A Microcircuit Model of the Frontal Eye Fields , 2007, The Journal of Neuroscience.