AERODYNAMICS OF ELECTRICALLY DRIVEN FREIGHT PIPELINE SYSTEM

This paper examines the aerodynamic characteristics of a freight pipeline system in which freight capsules are individually propelled by electrical motors. The fundamental difference between this system and the more extensively studied pneumatic capsule pipeline is the different role played by aerodynamic forces. In a driven system the propelled capsules are resisted by aerodynamic forces and, in reaction, pump air through the tube. In contrast, in a pneumatically propelled system external blowers pump air through the tubes, and this provides the thrust for the capsules. An incompressible transient analysis is developed to study the aerodynamics of multiple capsules in a cross-linked two-bore pipeline. An aerodynamic friction coefficient is used as a cost parameter to compare the effects of capsule blockage and headway and to assess the merits of adits and vents. We conclude that optimum efficiency for off-design operation is obtained with long platoons of capsules in vented or adit connected tubes.