Cone opponency: An efficient way of transmitting chromatic information.

Cone or color opponency provides visual neurons with a spectral selectivity more sharply tuned than the absorption spectra of the cone photoreceptors. It is achieved by subtractive interaction of inputs from different cones. In different species, there are different varieties of cone and color opponency, but in human and primates, there are two cone-opponent pathways, one with subtractive input from the middle- and long-wavelength cones and the other with subtractive inputs from the short-wavelength (S) cone and some combination of the other two. These pathways are distinctive anatomically as well as physiologically, and the S-cone pathway is phylogenetically the older. We review these pathways. This way of coding for color is thought to be efficient from an informational standpoint; we argue that these pathways are specialized for transmitting the surface characteristics of objects.

[1]  A. Pope An essay on man, moral essays and satires , 1905 .

[2]  R. L. de Valois,et al.  Response of single cells in monkey lateral geniculate nucleus to monochromatic light. , 1958, Science.

[3]  E. MacNichol,et al.  RETINAL MECHANISMS FOR CHROMATIC AND ACHROMATIC VISION , 1958, Annals of the New York Academy of Sciences.

[4]  R. L. de Valois,et al.  Responses of Single Cells in Visual System to Shifts in the Wavelength of Light , 1964, Science.

[5]  T. Tomita Electrophysiological study of the mechanisms subserving color coding in the fish retina. , 1965, Cold Spring Harbor symposia on quantitative biology.

[6]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[7]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[8]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[9]  N. Daw,et al.  Goldfish Retina: Organization for Simultaneous Color Contrast , 1967, Science.

[10]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[11]  N. Daw Colour‐coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli , 1968, The Journal of physiology.

[12]  H. Barlow,et al.  Three factors limiting the reliable detection of light by retinal ganglion cells of the cat , 1969, The Journal of physiology.

[13]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[14]  G. D. SANDERS,et al.  Variations in Retention Performance during Long Term Memory Formation , 1971, Nature.

[15]  B. Boycott,et al.  The connections between bipolar cells and photoreceptors in the retina of the domestic cat , 1973, The Journal of comparative neurology.

[16]  B. Boycott,et al.  The horizontal cells of the rhesus monkey retina , 1973, The Journal of comparative neurology.

[17]  R. L. Valois,et al.  Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. , 1974, Vision research.

[18]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[19]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[20]  I. Abramov,et al.  Color vision in the peripheral retina. I. Spectral sensitivity. , 1977, Journal of the Optical Society of America.

[21]  J. Bowmaker,et al.  Visual pigments of rods and cones in a human retina. , 1980, The Journal of physiology.

[22]  J. Mollon,et al.  Microspectrophotometric demonstration of four classes of photoreceptor in an old world primate, Macaca fascicularis. , 1980, The Journal of physiology.

[23]  B. Boycott,et al.  Morphology and topography of on- and off-alpha cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  B. Boycott,et al.  Dendritic territories of cat retinal ganglion cells , 1981, Nature.

[25]  H. Wässle,et al.  Morphological identification of on- and off-centre brisk transient (Y) cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[26]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[27]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[28]  Trichur Raman Vidyasagar,et al.  The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings. , 1983, The Journal of physiology.

[29]  W. Paulus,et al.  A new concept of retinal colour coding , 1983, Vision Research.

[30]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  G. H. Jacobs Within-species variations in visual capacity among squirrel monkeys (Saimiri Sciureus): Color vision , 1984, Vision Research.

[32]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[33]  A. Mariani Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive , 1984, Nature.

[34]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[35]  J. Mollon,et al.  Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  C. R. Ingling,et al.  The spatiotemporal properties of the r-g X-cell channel , 1985, Vision Research.

[37]  Barry B. Lee,et al.  Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.

[38]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[39]  J. Nathans,et al.  Molecular genetics of inherited variation in human color vision. , 1986, Science.

[40]  B. B. Lee,et al.  An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  B. B. Lee,et al.  The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. , 1988, The Journal of physiology.

[42]  P. Lennie,et al.  Mechanisms of color vision. , 1988, Critical reviews in neurobiology.

[43]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[44]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  A. Hendrickson,et al.  Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina) , 1989, The Journal of comparative neurology.

[46]  C. Stromeyer,et al.  Visual interactions with luminance and chromatic stimuli. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[47]  P. Rakić,et al.  Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  B. B. Lee,et al.  The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. , 1990, The Journal of physiology.

[50]  I. Abramov,et al.  Color appearance in the peripheral retina: effects of stimulus size. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[51]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[52]  Michael S. Landy,et al.  The Design of Chromatically Opponent Receptive Fields , 1991 .

[53]  V. Smith Origin of Perceptually Measured Phase Shifts in the Visual System , 1991 .

[54]  H. Kolb,et al.  Midget ganglion cells of the parafovea of the human retina: A Study by electron microscopy and serial section reconstructions , 1991, The Journal of comparative neurology.

[55]  R. Hess,et al.  Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. , 1991, The Journal of physiology.

[56]  R. W. Rodieck Which Cells Code for Color , 1991 .

[57]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[58]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[59]  J. Pokorny,et al.  Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. , 1992, The Journal of physiology.

[60]  B. B. Lee,et al.  Responses of macaque ganglion cells to movement of chromatic borders. , 1992, Journal of Physiology.

[61]  D. Marshak,et al.  Bipolar cells specific for blue cones in the macaque retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  W. McIlhagga,et al.  Detection mechanisms in L-, M-, and S-cone contrast space. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[63]  D. Dacey Morphology of a small-field bistratified ganglion cell type in the macaque and human retina , 1993, Visual Neuroscience.

[64]  G. H. Jacobs,et al.  Photopigments and color vision in the nocturnal monkey,Aotus , 1993, Vision Research.

[65]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  B. B. Lee,et al.  Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[67]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[68]  Bb Lee,et al.  Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus) , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  B. B. Lee,et al.  Parallel pathways in the retina of Old and New World primates. , 1996, Revista brasileira de biologia.

[70]  G. H. Jacobs Primate photopigments and primate color vision. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Dacey,et al.  This paper was presented at a colloquium entitled ‘ ‘ Vision : From Photon to Perception , ’ ’ organized by , 1998 .

[72]  David J. Calkins,et al.  Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina , 1996, Nature.

[73]  K. Mullen,et al.  Losses in Peripheral Colour Sensitivity Predicted from “Hit and Miss” Post-receptoral Cone Connections , 1996, Vision Research.

[74]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[75]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[76]  J. Neitz,et al.  Recent evolution of uniform trichromacy in a New World monkey , 1998, Vision Research.

[77]  L. Silveira,et al.  Parallel Pathways of Primate Vision , 1998 .

[78]  J. Mollon,et al.  Molecular evolution of trichromacy in primates , 1998, Vision Research.

[79]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[80]  B. B. Lee,et al.  Receptive fields of primate retinal ganglion cells studied with a novel technique , 1998, Visual Neuroscience.

[81]  B. B. Lee,et al.  Ganglion cells of a short-wavelength-sensitive cone pathway in New World monkeys: Morphology and physiology , 1999, Visual Neuroscience.

[82]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[83]  Y. Tan,et al.  Vision: Trichromatic vision in prosimians , 1999, Nature.

[84]  J. Mollon,et al.  The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. , 1999, Genome research.

[85]  P. Lennie,et al.  Fine Structure of Parvocellular Receptive Fields in the Primate Fovea Revealed by Laser Interferometry , 2000, The Journal of Neuroscience.

[86]  Paul R. Martin,et al.  Visual responses of ganglion cells of a New‐World primate, the capuchin monkey, Cebus apella , 2000, The Journal of physiology.

[87]  P. Lennie,et al.  Packing arrangement of the three cone classes in primate retina , 2001, Vision Research.

[88]  Paul R. Martin,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[89]  G. H. Jacobs,et al.  Opsin gene and photopigment polymorphism in a prosimian primate , 2002, Vision Research.

[90]  K. Mullen,et al.  Differential distributions of red–green and blue–yellow cone opponency across the visual field , 2002, Visual Neuroscience.

[91]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[92]  D. Dacey,et al.  Identification of an S-cone Opponent OFF Pathway in the Macaque Monkey Retina: Morphology, Physiology and Possible Circuitry , 2002 .

[93]  S. Schein,et al.  Inner S‐cone bipolar cells provide all of the central elements for S cones in macaque retina , 2003, The Journal of comparative neurology.

[94]  Paul D. Gamlin,et al.  Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types , 2003, Neuron.

[95]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[96]  Donald I. A. MacLeod,et al.  The pleistochrome: optimal opponent codes for natural colours , 2003 .

[97]  S. Schein,et al.  Macaque Retina Contains an S-Cone OFF Midget Pathway , 2003, The Journal of Neuroscience.

[98]  I. Perlman,et al.  Homogeneity and diversity of color-opponent horizontal cells in the turtle retina: Consequences for potential wavelength discrimination. , 2004, Journal of vision.

[99]  Barry B. Lee,et al.  Morphology and physiology of primate M- and P-cells. , 2004, Progress in brain research.

[100]  Responses to coloured patterns in the macaque lateral geniculate nucleus: Analysis of receptive field properties , 2004, Experimental Brain Research.

[101]  H. Nothdurft,et al.  Responses to coloured patterns in the macaque lateral geniculate nucleus: Pattern processing in single neurones , 2004, Experimental Brain Research.

[102]  J. Verweij,et al.  L and M Cone Contributions to the Midget and Parasol Ganglion Cell Receptive Fields of Macaque Monkey Retina , 2004, The Journal of Neuroscience.

[103]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[104]  Paul R. Martin,et al.  Spatial coding and response redundancy in parallel visual pathways of the marmoset Callithrix jacchus , 2005, Visual Neuroscience.

[105]  K. Mullen,et al.  Does L/M Cone Opponency Disappear in Human Periphery? , 2005, Perception.

[106]  Paul R. Martin,et al.  Chromatic Organization of Ganglion Cell Receptive Fields in the Peripheral Retina , 2005, The Journal of Neuroscience.

[107]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[108]  U. Grünert,et al.  S‐cones do not contribute to the OFF‐midget pathway in the retina of the marmoset, Callithrix jacchus , 2005, The European journal of neuroscience.

[109]  Paul R. Martin,et al.  Geniculocortical relay of blue-off signals in the primate visual system , 2006, Proceedings of the National Academy of Sciences.

[110]  Paul R. Martin,et al.  Comparative Anatomy and Physiology of the Primate Retina , 2006 .

[111]  Barry B. Lee,et al.  Specificity of cone inputs to macaque retinal ganglion cells. , 2006, Journal of neurophysiology.

[112]  J. Kremers,et al.  Spatial receptive field properties of lateral geniculate cells in the owl monkey (Aotus azarae) at different contrasts: a comparative study , 2007, The European journal of neuroscience.

[113]  Jonathon Shlens,et al.  Spatial Properties and Functional Organization of Small Bistratified Ganglion Cells in Primate Retina , 2007, The Journal of Neuroscience.

[114]  G. H. Jacobs New World Monkeys and Color , 2007, International Journal of Primatology.

[115]  S. Shevell,et al.  Color in complex scenes. , 2008, Annual review of psychology.

[116]  D. Dacey,et al.  Y-Cell Receptive Field and Collicular Projection of Parasol Ganglion Cells in Macaque Monkey Retina , 2008, The Journal of Neuroscience.

[117]  Paul D. Gamlin,et al.  The Smooth Monostratified Ganglion Cell: Evidence for Spatial Diversity in the Y-Cell Pathway to the Lateral Geniculate Nucleus and Superior Colliculus in the Macaque Monkey , 2008, The Journal of Neuroscience.

[118]  Bevil R. Conway,et al.  Neural basis for unique hues , 2008, Current Biology.

[119]  J. Bowmaker Evolution of vertebrate visual pigments , 2008, Vision Research.

[120]  B. B. Lee,et al.  Transmission of blue (S) cone signals through the primate lateral geniculate nucleus , 2008, The Journal of physiology.

[121]  P. Lennie,et al.  Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque , 2008, The Journal of Neuroscience.

[122]  V. Pessoa,et al.  Color vision in the black howler monkey (Alouatta caraya) , 2008, Visual Neuroscience.

[123]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[124]  C. M. Davenport,et al.  Parallel ON and OFF Cone Bipolar Inputs Establish Spatially Coextensive Receptive Field Structure of Blue-Yellow Ganglion Cells in Primate Retina , 2009, The Journal of Neuroscience.

[125]  J. Mollon,et al.  A neural basis for unique hues? , 2009, Current Biology.

[126]  Paul R. Martin,et al.  Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus , 2009, The European journal of neuroscience.

[127]  Lawrence C. Sincich,et al.  Resolving Single Cone Inputs to Visual Receptive Fields , 2009, Nature Neuroscience.

[128]  C. Galletti,et al.  Connections of the Dorsomedial Visual Area: Pathways for Early Integration of Dorsal and Ventral Streams in Extrastriate Cortex , 2009, The Journal of Neuroscience.

[129]  Paul R. Martin,et al.  Retinal connectivity and primate vision , 2010, Progress in Retinal and Eye Research.

[130]  Barry B. Lee Visual pathways and psychophysical channels in the primate , 2011, The Journal of physiology.

[131]  D. Dacey,et al.  Horizontal Cell Feedback without Cone Type-Selective Inhibition Mediates “Red–Green” Color Opponency in Midget Ganglion Cells of the Primate Retina , 2011, The Journal of Neuroscience.

[132]  Barry B. Lee,et al.  Segregation of chromatic and luminance signals using a novel grating stimulus , 2011, The Journal of physiology.

[133]  R. Shapley,et al.  Color in the Cortex: single- and double-opponent cells , 2011, Vision Research.

[134]  A. Sher,et al.  A non-canonical pathway for mammalian blue-green color vision , 2012, Nature Neuroscience.

[135]  Shansup Chen,et al.  A color coding amacrine cell may provide a “Blue–Off” signal in a mammalian retina , 2012, Nature Neuroscience.

[136]  Barry B. Lee,et al.  Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[137]  Barry B. Lee,et al.  Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[138]  Galit Yovel,et al.  Face recognition systems in monkey and human: are they the same thing? , 2013, F1000prime reports.

[139]  D. Heeger,et al.  Categorical Clustering of the Neural Representation of Color , 2013, The Journal of Neuroscience.

[140]  M. Baker Neuroscience: Through the eyes of a mouse , 2013, Nature.

[141]  U. Grünert,et al.  Organisation of koniocellular‐projecting ganglion cells and diffuse bipolar cells in the primate fovea , 2013, The European journal of neuroscience.

[142]  D. Dacey,et al.  Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina , 2013, Visual Neuroscience.

[143]  Barry B. Lee,et al.  Alouatta Trichromatic Color Vision: Cone Spectra and Physiological Responses Studied with Microspectrophotometry and Single Unit Retinal Electrophysiology , 2014, PloS one.

[144]  Paul R. Martin,et al.  Distribution and specificity of S-cone (“blue cone”) signals in subcortical visual pathways , 2014, Visual Neuroscience.

[145]  Barry B. Lee,et al.  Color coding in the primate visual pathway: a historical view. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[146]  Barry B. Lee,et al.  Spatiotemporal properties of macaque retinal ganglion cells: an harmonic analysis and relationships to psychophysical data , 2014 .

[147]  A. R. Rodrigues,et al.  Joint Entropy for Space and Spatial Frequency Domains Estimated from Psychometric Functions of Achromatic Discrimination , 2014, PloS one.