Mulitstep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation

A tenth algebraic order eight-step method is developed in this paper. For this method  we require the phase-lag and its first and second derivatives to be vanished. A comparative error analysis and a comparative stability analysis are also presented in this paper. The new proposed method is applied for the numerical solution of the one-dimensional Schrödinger equation. The efficiency of the new methodology is proved via the theoretical analysis and the numerical applications. General conclusions about the importance of several properties on the construction of numerical algorithms for the approximate solution of the radial Schrödinger equation are also presented.

[1]  Theodore E. Simos Dissipative High Phase-lag Order Numerov-type Methods for the Numerical Solution of the Schrödinger Equation , 1999, Comput. Chem..

[2]  T. E. Simos,et al.  A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation , 2003 .

[3]  T. E. Simos SOME LOW ORDER TWO-STEP ALMOST P-STABLE METHODS WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL INTEGRATION OF THE RADIAL SCHRÖDINGER EQUATION , 1995 .

[4]  Georgios Psihoyios,et al.  Trigonometrically fitted predictor: corrector methods for IVPs with oscillating solutions , 2003 .

[5]  Theodore E. Simos New Embedded Explicit Methods with Minimal Phase-lag for the Numerical Integration of the Schrödinger Equation , 1998, Comput. Chem..

[6]  Theodore E. Simos,et al.  On Finite Difference Methods for the Solution of the Schrödinger Equation , 1999, Comput. Chem..

[7]  Theodore E. Simos High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems , 2008, Comput. Phys. Commun..

[8]  Tom E. Simos,et al.  An Eighth-Order Method With Minimal Phase-Lag For Accurate Computations For The Elastic Scattering Phase-Shift Problem , 1996 .

[9]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[10]  T. Monovasilis,et al.  New Second-order Exponentially and Trigonometrically Fitted Symplectic Integrators for the Numerical Solution of the Time-independent Schrödinger Equation , 2007 .

[11]  T. Simos A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation , 2000 .

[12]  T. E. Simos,et al.  Family of Twelve Steps Exponential Fitting Symmetric Multistep Methods for the Numerical Solution of the Schrödinger Equation , 2002 .

[13]  G. Avdelas,et al.  A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 2. Development of the Generator, Optimization of the Generator and Numerical Results , 2001 .

[14]  G. Avdelas,et al.  A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 1. Development of the Basic Method , 2001 .

[15]  T. E. Simos,et al.  A Symmetric High Order Method With Minimal Phase-Lag For The Numerical Solution Of The Schrödinger Equation , 2001 .

[17]  Theodore E. Simos,et al.  Accurate Computations for the Elastic Scattering Phase-shift Problem , 1997, Comput. Chem..

[18]  Theodore E. Simos,et al.  Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrödinger equation , 2005, Computing.

[19]  T. E. Simos,et al.  A four-step exponentially fitted method for the numerical solution of the Schrödinger equation , 2006 .

[20]  A Family Of Hybrid Eighth Order Methods With Minimal Phase-Lag For The Numerical Solution Of The Schrödinger Equation And Related Problems , 2000 .

[21]  S. Tremaine,et al.  Symmetric Multistep Methods for the Numerical Integration of Planetary Orbits , 1990 .

[22]  T. E. Simos,et al.  ON THE CONSTRUCTION OF EFFICIENT METHODS FOR SECOND ORDER IVPS WITH OSCILLATING SOLUTION , 2001 .

[23]  A. Konguetsof A new two-step hybrid method for the numerical solution of the Schrödinger equation , 2010 .

[24]  D. P. Sakas,et al.  Multiderivative methods of eighth algebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation , 2005 .

[25]  Zacharias A. Anastassi,et al.  A Family of Exponentially-fitted Runge–Kutta Methods with Exponential Order Up to Three for the Numerical Solution of the Schrödinger Equation , 2007 .

[26]  T. E. Simos,et al.  Closed Newton–Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation , 2008 .

[27]  Tom E. Simos A new variable-step method for the numerical integration of special second-order initial value problems and their application to the one-dimensional Schrödinger equation , 1993 .

[28]  Zacharias A. Anastassi,et al.  An optimized Runge-Kutta method for the solution of orbital problems , 2005 .

[29]  T. E. Simos,et al.  An explicit eighth order method with minimal phase-lag for the numerical solution of the Schrödinger equation , 1997 .

[30]  Zacharoula Kalogiratou,et al.  Construction of Trigonometrically and Exponentially Fitted Runge–Kutta–Nyström Methods for the Numerical Solution of the Schrödinger Equation and Related Problems – a Method of 8th Algebraic Order , 2002 .

[31]  Tom E. Simos Explicit eighth order methods for the numerical integration of initial-value problems with periodic or oscillating solutions , 1999 .

[32]  T. E. Simos Predictor-corrector phase-fitted methods for Y{double_prime} = F(X,Y) and an application to the Schroedinger equation , 1995 .

[33]  A. Konguetsof,et al.  A generator of dissipative methods for the numerical solution of the Schrödinger equation , 2002 .

[34]  T. E. Simos Explicit two-step methods with minimal phase-lag for the numerical integration of special second-order initial-value problems and their application to the one-dimensional Schro¨dinger equation , 1992 .

[35]  G. Avdelas,et al.  Embedded eighth order methods for the numerical solution of the Schrödinger equation , 1999 .

[36]  A. D. Raptis,et al.  Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control , 1983 .

[37]  Zacharoula Kalogiratou,et al.  Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2003 .

[38]  Tom E. Simos High-order methods with minimal phase-lag for the numerical integration of the special second-order initial value problem and their application to the one-dimensional Schrödinger equation , 1993 .

[39]  Zacharias A. Anastassi,et al.  Numerical multistep methods for the efficient solution of quantum mechanics and related problems , 2009 .

[40]  T. Simos HIGH ALGEBRAIC ORDER EXPLICIT METHODS WITH REDUCED PHASE-LAG FOR AN EFFICIENT SOLUTION OF THE SCHRODINGER EQUATION , 1999 .

[41]  M. A. Darwish,et al.  Integral equations and potential-theortic type integrals of orthogonal polynomials , 1999 .

[42]  Theodore E. Simos,et al.  A new finite difference scheme with minimal phase-lag for the numerical solution of the Schrödinger equation , 1999, Appl. Math. Comput..

[43]  D. P. Sakas,et al.  A family of multiderivative methods for the numerical solution of the Schrödinger equation , 2005 .

[44]  Theodore E. Simos,et al.  Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions , 2003, Numerical Algorithms.

[45]  Tom E. Simos A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial-value problems , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[46]  T. E. Simos,et al.  New P-Stable Eighth Algebraic Order Exponentially-Fitted Methods for the Numerical Integration of the Schrödinger Equation , 2002 .

[47]  A. Konguetsof,et al.  A generator of hybrid explicit methods for the numerical solution of the Schrödinger equation and related problems , 2001 .

[48]  T. Simos,et al.  Sixth algebraic order trigonometrically fitted predictor–corrector methods for the numerical solution of the radial Schrödinger equation , 2005 .

[49]  Theodore E. Simos Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution , 2004, Appl. Math. Lett..

[50]  Theodore E. Simos,et al.  New Insights in the Development of Numerov-type Methods with Minimal Phase-lag for the Numerical Solution of the Schrödinger Equation , 2001, Comput. Chem..

[51]  G. A. Panopoulos,et al.  Two New Optimized Eight-Step Symmetric Methods for the Efficient Solution of the Schrodinger Equation and Related Problems , 2008 .

[52]  Zacharias A. Anastassi,et al.  A dispersive-fitted and dissipative-fitted explicit Runge–Kutta method for the numerical solution of orbital problems , 2004 .

[53]  Tom E. Simos A family of four-step exponentially fitted predictor-corrector methods for the numerical integration of the Schro¨dinger equation , 1995 .

[54]  T. E. Simos,et al.  A Family of Trigonometrically-Fitted Symmetric Methods for the Efficient Solution of the Schrödinger Equation and Related Problems , 2003 .

[55]  Tom E. Simos,et al.  A Numerov-type method for the numerical solution of the radial Schro¨dinger equation , 1991 .

[56]  T. E. Simos,et al.  A family of two-step almostP-stable methods with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems , 1993 .

[57]  Theodore E. Simos,et al.  P-stable Eighth Algebraic Order Methods for the Numerical Solution of the Schrödinger Equation , 2002, Comput. Chem..

[58]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[59]  T. E. Simos,et al.  Numerical methods for the solution of 1D, 2D and 3D differential equations arising in chemical problems , 2002 .

[60]  T. E. Simos A high order predictor-corrector method for periodic IVPS , 1993 .

[61]  Theodore E. Simos,et al.  Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems , 2009, Appl. Math. Lett..

[62]  T. E. Simos,et al.  A family of P-stable exponentially‐fitted methods for the numerical solution of the Schrödinger equation , 1999 .

[64]  T. Simos Exponentially and Trigonometrically Fitted Methods for the Solution of the Schrödinger Equation , 2010 .

[65]  Theodore E. Simos,et al.  High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation , 2009, Appl. Math. Comput..

[66]  T. E. Simos,et al.  Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations , 1998 .

[67]  Tom E. Simos,et al.  Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics , 2005 .

[68]  Jesús Vigo-Aguiar,et al.  Review of multistep methods for the numerical solution of the radial Schrödinger equation , 2005 .

[69]  T. E. Simos,et al.  A new method for the numerical solution of fourth-order BVP's with oscillating solutions , 1996 .

[70]  Moawwad E. A. El-Mikkawy,et al.  Families of Runge-Kutta-Nystrom Formulae , 1987 .

[71]  M. Rizea,et al.  Comparison of some four-step methods for the numerical solution of the Schrödinger equation , 1985 .

[72]  Tom E. Simos,et al.  A finite-difference method for the numerical solution of the Schro¨dinger equation , 1997 .

[73]  Theodore E. Simos,et al.  On Variable-step Methods for the Numerical Solution of Schrödinger Equation and Related Problems , 2001, Comput. Chem..

[74]  T. E. Simos,et al.  Exponentially - Fitted Multiderivative Methods for the Numerical Solution of the Schrödinger Equation , 2004 .

[75]  T. Simos EIGHTH-ORDER METHOD FOR ACCURATE COMPUTATIONS FOR THE ELASTIC SCATTERING PHASE-SHIFT PROBLEM , 1998 .

[76]  Tom E. Simos,et al.  AN EMBEDDED RUNGE–KUTTA METHOD WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION , 2000 .

[77]  T. Simos High Algebraic Order Methods with Minimal Phase-Lag for Accurate Solution of the Schrödinger Equation , 1998 .

[78]  T. Simos Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems☆ , 1993 .

[79]  T. E. Simos Closed Newton-Cotes Trigonometrically-Fitted Formulae for the Solution of the Schrodinger Equation , 2008 .

[80]  T. E. Simos,et al.  High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation , 2010 .

[81]  T. E. Simos,et al.  Eighth order methods with minimal phase‐lag for accurate computations for the elastic scattering phase‐shift problem , 1997 .

[82]  Theodore E. Simos,et al.  An Explicit Eighth-order Method with Minimal Phase-lag for Accurate Computations of Eigenvalues, Resonances and Phase Shifts , 1997, Comput. Chem..

[83]  Theodore E. Simos,et al.  A Modified Runge-Kutta Method with Phase-lag of Order Infinity for the Numerical Solution of the Schrödinger Equation and Related Problems , 2001, Comput. Chem..

[84]  Tom E. Simos,et al.  A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution , 1993 .

[86]  A. A. Kosti,et al.  An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems , 2009 .

[87]  CLOSED NEWTON–COTES TRIGONOMETRICALLY-FITTED FORMULAE FOR LONG-TIME INTEGRATION , 2003 .

[88]  T. E. Simos,et al.  A Family Of Numerov-Type Exponentially Fitted Predictor-Corrector Methods For The Numerical Integrat , 1996 .

[89]  Theodore E. Simos,et al.  A phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions , 2008, Comput. Phys. Commun..

[90]  Tom E. Simos An explicit almost P-stable two-step method with phase-lag of order infinity for the numerical integration of second-order pacific initial-value problems , 1992 .

[91]  T. E. Simos NEW NUMEROV-TYPE METHODS FOR COMPUTING EIGENVALUES, RESONANCES, AND PHASE SHIFTS OF THE RADIAL SCHRODINGER EQUATION , 1997 .

[92]  T. Simos High Algebraic Order Methods for the Numerical Solution of the Schrödinger Equation , 1999 .

[93]  Theodore E. Simos,et al.  A P-stable exponentially fitted method for the numerical integration of the Schrödinger equation , 2000, Appl. Math. Comput..

[94]  T. E. Simos,et al.  A two-step method for the numerical solution of the radial Schrödinger equation , 1995 .

[95]  E. Aydiner The time evaluation of resistance probability of a closed community against to occupation in a Sznajd like model with synchronous updating: A numerical study , 2004, cond-mat/0405490.

[96]  T. Simos,et al.  The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor–Corrector methods , 2006 .

[97]  Zacharias A. Anastassi,et al.  Special Optimized Runge-Kutta Methods for IVPs with Oscillating Solutions , 2004 .

[98]  Theodore E. Simos,et al.  A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problem , 1991, Int. J. Comput. Math..

[99]  A. Messiah Quantum Mechanics , 1961 .

[100]  Ch. Tsitouras,et al.  High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems , 2002, Appl. Math. Comput..

[101]  An extended numerov-type method for the numerical solution of the Schrödinger equation , 1997 .

[102]  High-algebraic, high-phase lag methods for accurate computations for the elastic- scattering phase shift problem , 1998 .

[103]  Tom E. Simos,et al.  An explicit four-step phase-fitted method for the numerical integration of second-order initial-value problems , 1994 .

[104]  T. E. Simos,et al.  Atomic structure computations , 2000 .

[105]  Zacharias A. Anastassi,et al.  Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .

[106]  G. Avdelas,et al.  Dissipative high phase-lag order numerov-type methods for the numerical solution of the Schrodinger equation , 2000 .

[107]  A. D. Raptis,et al.  A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .

[108]  K. Tselios,et al.  Symplectic Methods for the Numerical Solution of the Radial Shrödinger Equation , 2003 .

[109]  T. Simos,et al.  A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution , 2009 .

[110]  T. E. Simos,et al.  Two-step almost p-stable complete in phase methods for the numerical integration of second order periodic initial-value problems , 1992 .

[111]  T. E. Simos AN EXPLICIT HIGH ORDER PREDICTOR-CORRECTOR METHOD FOR PERIODIC INITIAL VALUE PROBLEMS , 1995 .

[112]  Tom E. Simos,et al.  Eighth-order methods for elastic scattering phase shifts , 1997 .

[113]  Tom E. Simos Some new variable-step methods with minimal phase lag for the numerical integration of special second-order initial-value problem , 1994 .

[114]  T. Monovasilis,et al.  Symplectic integrators for the numerical solution of the Schrödinger equation , 2003 .

[115]  Tom E. Simos,et al.  A NEW MODIFIED RUNGE–KUTTA–NYSTRÖM METHOD WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION AND RELATED PROBLEMS , 2000 .

[116]  K. Tselios,et al.  Symplectic Methods of Fifth Order for the Numerical Solution of the Radial Shrödinger Equation , 2004 .

[117]  T. E. Simos,et al.  Some new Numerov-type methods with minimal phase lag for the numerical integration of the radial Schrödinger equation , 1994 .

[118]  Z. Kalogiratou,et al.  Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2006 .

[119]  Stuart A. Rice,et al.  New methods in computational quantum mechanics , 1996 .

[120]  Zacharoula Kalogiratou,et al.  Newton--Cotes formulae for long-time integration , 2003 .

[121]  T. E. Simos Runge-Kutta interpolants with minimal phase-lag☆ , 1993 .

[122]  T. E. Simos,et al.  A new Numerov-type method for the numerical solution of the Schrödinger equation , 2009 .

[123]  T. E. Simos,et al.  A predictor-corrector phase-fitted method for y′′=f x,y , 1993 .

[124]  Tom E. Simos,et al.  A Modified Phase-Fitted Runge–Kutta Method for the Numerical Solution of the Schrödinger Equation , 2001 .

[125]  T E Simos New P-stable high-order methods with minimal phase-lag for the numerical integration of the radial Schrödinger equation , 1997 .

[126]  T. E. Simos,et al.  Embedded methods for the numerical solution of the Schrödinger equation , 1996 .

[127]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[128]  Ch. Tsitouras,et al.  Optimized Runge-Kutta pairs for problems with oscillating solutions , 2002 .

[129]  A. C. Allison,et al.  Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .

[130]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[131]  T. E. Simos,et al.  Numerical integration of the one-dimensional Schro¨dinger equations , 1990 .

[132]  T. E. Simos,et al.  Symmetric Eighth Algebraic Order Methods with Minimal Phase-Lag for the Numerical Solution of the Schrödinger Equation , 2002 .

[133]  Tom E. Simos A New Numerov-Type Method For Computing Eigenvalues And Resonances Of The Radial Schrödinger Equation , 1996 .

[134]  T. Simos A family of four-step trigonometrically-fitted methods and its application to the schrödinger equation , 2008 .