The average dimension of the Hermitian hull of cyclic codes over finite fields of square order

In this paper, the average dimension of the Hermitian hull of cyclic codes of length n over Fq2, denoted by EH (n, q2), is studied. Some upper and lower bounds of EH (n, q2) are given. Moreover, EH (n, q2) is shown to be zero if and only if n ∈ Mq:={l≥1| l divides qi+1 for some odd positive integer i} and it grows the same rate as n if n ∉ Mq

[1]  Patanee Udomkavanich,et al.  Hulls of cyclic and negacyclic codes over finite fields , 2015, Finite Fields Their Appl..

[2]  Jennifer D. Key,et al.  Affine and projective planes , 1990, Discret. Math..

[3]  N. Sendrier,et al.  On the computation of the automorphism group of a linear code , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[4]  Gintaras Skersys,et al.  The Average Dimension of the Hull of Cyclic Codes , 2001, Discret. Appl. Math..

[5]  Jeffrey S. Leon,et al.  Computing automorphism groups of error-correcting codes , 1982, IEEE Trans. Inf. Theory.

[6]  J. S. Leon,et al.  Permutation Group Algorithms Based on Partitions, I: Theory and Algorithms , 1991, J. Symb. Comput..

[7]  Patrick Solé,et al.  Hermitian Self-Dual Abelian Codes , 2014, IEEE Transactions on Information Theory.