An Image-Recognition System Implemented on Hierarchical Parallel Architectures

The paper describes a parallel implementation of a vision system based on associative memories. The proposed real-time image-recognition system is based on the associative 'noise-like coding' model and is implemented on transputer-based tree structures. A high-performance device, the 'complex node' (CN), is introduced. The CN integrates two transputers by a dual-port memory and supports a total of eight links. Tree structures increase their throughput performance when CNs are included. A CN-including tree architecture is compared with a standard transputer-based tree structure having the same computational power. A comparative performance analysis shows the improvement in efficiency obtained when the novel device is used. In addition, theoretical derivations lead to a formula for the system's efficiency, and one demonstrates that expected values fit with measured ones, thus confirming the validity of the overall approach.

[1]  Sandro Ridella,et al.  Distributed key-generation structures for associative image-classification , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[2]  T. S. Parker,et al.  A Tutorial for Engineers , 1987 .

[3]  Nikolaos G. Bourbakis,et al.  Multiprocessor vision system , 1990, Microprocess. Microsystems.

[4]  D. GABOR,et al.  Holographic Model of Temporal Recall , 1968, Nature.

[5]  Yee Leung,et al.  Asymmetric bidirectional associative memories , 1994 .

[6]  Harry Wechsler,et al.  2-D Invariant Object Recognition Using Distributed Associative Memory , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  D. Gabor Associative holographic memories , 1969 .

[8]  Nikolaos G. Bourbakis,et al.  A RISC-bit-sliced design of the HERMES multilevel vision system , 1988 .

[9]  Rodolfo Zunino,et al.  Speeding up scene recognition by using an associative noise-like coding memory , 1991, [1991 Proceedings] Tenth Annual International Phoenix Conference on Computers and Communications.

[10]  Debasish Ghose,et al.  Optimal Sequencing and Arrangement in Distributed Single-Level Tree Networks with Communication Delays , 1994, IEEE Trans. Parallel Distributed Syst..

[11]  D. GABOR,et al.  Improved Holographic Model of Temporal Recall , 1968, Nature.

[12]  D. Hilbert Ueber die stetige Abbildung einer Line auf ein Flächenstück , 1891 .

[13]  Sartaj Sahni,et al.  Image Shrinking and Expanding on a Pyramid , 1993, IEEE Trans. Parallel Distributed Syst..

[14]  Gurindar S. Sohi,et al.  The Use of Feedback in Multiprocessors and Its Application to Tree Saturation Control , 1990, IEEE Trans. Parallel Distributed Syst..

[15]  G. Peano Sur une courbe, qui remplit toute une aire plane , 1890 .

[16]  Zongben Xu,et al.  Asymmetric Hopfield-type networks: Theory and applications , 1996, Neural Networks.

[17]  Sandro Ridella,et al.  Using chaos to generate keys for associative noise-like coding memories , 1993, Neural Networks.

[18]  S.-S. Chen,et al.  Character recognition in a sparse distributed memory , 1991, IEEE Trans. Syst. Man Cybern..

[19]  Magdy A. Bayoumi,et al.  The Hierarchical Hypercube: A New Interconnection Topology for Massively Parallel Systems , 1994, IEEE Trans. Parallel Distributed Syst..

[20]  Zongben Xu,et al.  A competitive associative memory model and its dynamics , 1995, IEEE Trans. Neural Networks.

[21]  Yakup Paker,et al.  A parallel FFT algorithm for transputer networks , 1991, Parallel Comput..

[22]  L. Chua,et al.  Chaos: A tutorial for engineers , 1987, Proceedings of the IEEE.

[23]  Nikolaos G. Bourbakis,et al.  Kydon: An autonomous, multi-layer image-understanding system: Lower layers , 1996 .

[24]  Davide Anguita,et al.  Shared-memory architecture to implement a high-connectivity processing node , 1995 .

[25]  E. L. WILLIAMS,et al.  Mechanism of Bonding in Aqueous Nickelous Nitrate–Magnesium Oxide Cements , 1968, Nature.

[26]  Harry Wechsler,et al.  Selective and Focused Invariant Recognition Using Distributed Associative Memories (DAM) , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  A. J. Barlow,et al.  Effect of surface voids on the precise determination of the velocity of ultrasound in solids , 1967 .

[28]  Alberto Diaspro,et al.  A performance analysis of an associative system for image classification , 1993, Pattern Recognit. Lett..

[29]  Chen-Chau Yang,et al.  Pattern Recognition by Using an Associative Memory , 1966, IEEE Trans. Electron. Comput..

[30]  Martin Brown,et al.  Advances in neurofuzzy algorithms for real-time modelling and control , 1996 .