Properties of uniform random walks in bounded convex bodies

Properties of constant-speed uniform random walks in bounded convex bodies are presented. Average quantities such as the mean length of the trajectories are expressed only according to the first moments of the chord length distribution. Some analytical results are then extended to the case of purely diffusive random walks. Exact results for convex geometric objects of simple shape in two and three dimensions illustrate our points.

[1]  A. Kellerer Chord-Length Distributions and Related Quantities for Spheroids , 1984 .

[2]  KARL PEARSON,et al.  The Problem of the Random Walk , 1905, Nature.

[3]  G. McIntyre,et al.  Estimation of Plant Density Using Line Transects , 1953 .

[4]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[5]  Random secants of a convex body generated by surface randomness , 1981 .

[6]  G. Porod,et al.  Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. II. Teil , 1952 .

[7]  E. G. Enns,et al.  Chords through a convex body generated from within an embedded body , 1988 .

[8]  K. M. Case,et al.  Introduction to the theory of neutron diffusion, v.1 , 1953 .

[9]  Alain Mazzolo,et al.  Properties of chord length distributions of nonconvex bodies , 2003 .

[10]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[11]  M. Dixmier,et al.  Une nouvelle description des empilements aléatoires et des fluides denses , 1978 .

[12]  Probability density distribution of random line segments inside a convex body: Application to random media , 2003 .

[13]  S. Blanco,et al.  An invariance property of diffusive random walks , 2019, 1902.07080.

[14]  Leszek Wojnar,et al.  Image Analysis , 1998 .

[15]  Rodney Coleman,et al.  Random paths through convex bodies , 1969, Journal of Applied Probability.

[16]  G. Fournet,et al.  Small‐Angle Scattering of X‐Rays , 1956 .

[17]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[18]  Frank Piefke Beziehungen zwischen der Sehnenlängenverteilung und der Verteilung des Abstandes zweier zufälliger Punkte im Eikörper , 1978 .

[19]  Mean free paths in a convex reflecting region , 1965 .

[20]  Alain Mazzolo,et al.  On the properties of the chord length distribution, from integral geometry to reactor physics , 2003 .

[21]  A M Kellerer,et al.  Considerations on the random traversal of convex bodies and solutions for general cylinders. , 1971, Radiation research.

[22]  E. G. Enns,et al.  Random paths through a convex region , 1978 .

[23]  S. Torquato,et al.  Chord-length distribution function for two-phase random media. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  E. Enns,et al.  Notes on random chords in convex bodies , 1993, Journal of Applied Probability.

[25]  S. Torquato Random Heterogeneous Materials , 2002 .

[26]  L. Santaló Integral geometry and geometric probability , 1976 .

[27]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[28]  S. Torquato,et al.  Lineal-path function for random heterogeneous materials. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[29]  G. Weiss,et al.  A generalized Pearson random walk allowing for bias , 1974 .