Impact of multidrug resistance on the pathogenicity of Pseudomonas aeruginosa: in vitro and in vivo studies.

[1]  A. Oliver,et al.  Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. , 2015, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[2]  Ronald N. Jones,et al.  Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and Mediterranean countries. , 2014, The Journal of antimicrobial chemotherapy.

[3]  S. Lory,et al.  Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing , 2013, Proceedings of the National Academy of Sciences.

[4]  M. Toleman,et al.  Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. , 2013, The Lancet. Infectious diseases.

[5]  A. Oliver,et al.  Biological Markers of Pseudomonas aeruginosa Epidemic High-Risk Clones , 2013, Antimicrobial Agents and Chemotherapy.

[6]  N. Marx,et al.  Inflammatory parameters and prediction of prognosis in infective endocarditis , 2013, BMC Infectious Diseases.

[7]  Zhen-Zhen Sun,et al.  Antibiotic Resistance in Pseudomonas Aeruginosa is Associated with Decreased Fitness , 2013, Cellular Physiology and Biochemistry.

[8]  J. Ariza,et al.  Impact of multidrug resistance on Pseudomonas aeruginosa ventilator-associated pneumonia outcome: predictors of early and crude mortality , 2013, European Journal of Clinical Microbiology & Infectious Diseases.

[9]  A. Oliver,et al.  Genetic Markers of Widespread Extensively Drug-Resistant Pseudomonas aeruginosa High-Risk Clones , 2012, Antimicrobial Agents and Chemotherapy.

[10]  M. Falagas,et al.  Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[11]  L. Hansen,et al.  Fitness cost: a bacteriological explanation for the demise of the first international methicillin-resistant Staphylococcus aureus epidemic. , 2012, The Journal of antimicrobial chemotherapy.

[12]  A. Oliver,et al.  Prospective Multicenter Study of the Impact of Carbapenem Resistance on Mortality in Pseudomonas aeruginosa Bloodstream Infections , 2011, Antimicrobial Agents and Chemotherapy.

[13]  A. Oliver,et al.  A large sustained endemic outbreak of multiresistant Pseudomonas aeruginosa: a new epidemiological scenario for nosocomial acquisition , 2011, BMC infectious diseases.

[14]  V. Tam,et al.  Effect of multidrug resistance-conferring mutations on the fitness and virulence of Pseudomonas aeruginosa. , 2011, The Journal of antimicrobial chemotherapy.

[15]  T. Tsaganos,et al.  Impact of Multidrug Resistance on Experimental Empyema by Pseudomonas aeruginosa , 2011, Respiration.

[16]  R. López-Rojas,et al.  Impaired virulence and in vivo fitness of colistin-resistant Acinetobacter baumannii. , 2011, The Journal of infectious diseases.

[17]  V. Tam,et al.  Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes , 2010, Expert review of pharmacoeconomics & outcomes research.

[18]  Sebastian Bonhoeffer,et al.  Compensation of Fitness Costs and Reversibility of Antibiotic Resistance Mutations , 2010, Antimicrobial Agents and Chemotherapy.

[19]  Diarmaid Hughes,et al.  Antibiotic resistance and its cost: is it possible to reverse resistance? , 2010, Nature Reviews Microbiology.

[20]  Zixin Deng,et al.  Pathogenicity Islands PAPI-1 and PAPI-2 Contribute Individually and Synergistically to the Virulence of Pseudomonas aeruginosa Strain PA14 , 2010, Infection and Immunity.

[21]  A. Oliver,et al.  Nosocomial Outbreak of a Non-Cefepime-Susceptible Ceftazidime-Susceptible Pseudomonas aeruginosa Strain Overexpressing MexXY-OprM and Producing an Integron-Borne PSE-1 ß-Lactamase , 2009, Journal of Clinical Microbiology.

[22]  J. Engel,et al.  Role of Pseudomonas aeruginosa type III effectors in disease. , 2009, Current opinion in microbiology.

[23]  D. Scholl,et al.  Antibacterial Efficacy of R-Type Pyocins towards Pseudomonas aeruginosa in a Murine Peritonitis Model , 2008, Antimicrobial Agents and Chemotherapy.

[24]  S. Cosgrove The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[25]  E. D. Gol’dberg,et al.  Immunity Parameters in Mice of Different Strains , 2005, Bulletin of Experimental Biology and Medicine.

[26]  R. Summerbell,et al.  Fusarium verticillioides Abscess of the Nasal Septum in an Immunosuppressed Child: Case Report and Identification of the Morphologically Atypical Fungal Strain , 2005, Journal of Clinical Microbiology.

[27]  J. Vincent,et al.  Molecular Characterization of an Epidemic Clone of Panantibiotic-Resistant Pseudomonas aeruginosa , 2005, Journal of Clinical Microbiology.

[28]  H. Grundmann,et al.  Development of a Multilocus Sequence Typing Scheme for the Opportunistic Pathogen Pseudomonas aeruginosa , 2004, Journal of Clinical Microbiology.

[29]  E. Giamarellos‐Bourboulis,et al.  Experimental sepsis using Pseudomonas aeruginosa: the significance of multi-drug resistance. , 2004, International journal of antimicrobial agents.

[30]  Martin C. J. Maiden,et al.  mlstdbNet – distributed multi-locus sequence typing (MLST) databases , 2004, BMC Bioinformatics.

[31]  E. Giamarellos‐Bourboulis,et al.  Stimulation of innate immunity by susceptible and multidrug‐resistant Pseudomonas aeruginosa: an in vitro and in vivo study , 2004, Clinical and experimental immunology.

[32]  R. Hancock,et al.  Multidrug Efflux Systems Play an Important Role in the Invasiveness of Pseudomonas aeruginosa , 2002, The Journal of experimental medicine.

[33]  A. Hauser,et al.  Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. , 2001, Microbiology.

[34]  Claude Carbón,et al.  Relationship between Capsular Type, Penicillin Susceptibility, and Virulence of Human Streptococcus pneumoniae Isolates in Mice , 2000, Antimicrobial Agents and Chemotherapy.

[35]  N. Barekzi,et al.  Efficacy of Locally Delivered Polyclonal Immunoglobulin against Pseudomonas aeruginosa Peritonitis in a Murine Model , 1999, Antimicrobial Agents and Chemotherapy.

[36]  D H Persing,et al.  Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing , 1995, Journal of clinical microbiology.

[37]  A. Deptuła,et al.  Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains , 2009, Archives of Microbiology.

[38]  A. Hauser,et al.  Interactions between effector proteins of the Pseudomonas aeruginosa type III secretion system do not significantly affect several measures of disease severity in mammals. , 2006, Microbiology.

[39]  N. Frimodt-Møller The mouse peritonitis model: present and future use. , 1993, The Journal of antimicrobial chemotherapy.