Conservation laws on complex networks

Abstract This paper considers a system described by a conservation law on a general network and deals with solutions to Cauchy problems. The main application is to vehicular traffic, for which we refer to the Lighthill–Whitham–Richards (LWR) model. Assuming to have bounds on the conserved quantity, we are able to prove existence of solutions to Cauchy problems for every initial datum in L loc 1 . Moreover Lipschitz continuous dependence of the solution with respect to initial data is discussed.

[1]  Paola Goatin,et al.  The Aw-Rascle vehicular traffic flow model with phase transitions , 2006, Math. Comput. Model..

[2]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[3]  Mauro Garavello,et al.  Source-Destination Flow on a Road Network , 2005 .

[4]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[5]  J. Nédélec,et al.  First order quasilinear equations with boundary conditions , 1979 .

[6]  H. M. Zhang A NON-EQUILIBRIUM TRAFFIC MODEL DEVOID OF GAS-LIKE BEHAVIOR , 2002 .

[7]  M. Herty,et al.  Network models for supply chains , 2005 .

[8]  Helbing Improved fluid-dynamic model for vehicular traffic. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[10]  Mauro Garavello,et al.  Traffic Flow on a Road Network , 2005, SIAM J. Math. Anal..

[11]  Michael Herty,et al.  Optimization criteria for modelling intersections of vehicular traffic flow , 2006, Networks Heterog. Media.

[12]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[13]  B. Piccoli,et al.  Well-posedness of the Cauchy problem for × systems of conservation laws , 2000 .

[14]  B. Piccoli,et al.  Traffic Flow on a Road Network Using the Aw–Rascle Model , 2006 .

[15]  P. I. Richards Shock Waves on the Highway , 1956 .

[16]  Tong Li,et al.  GLOBAL SOLUTIONS OF NONCONCAVE HYPERBOLIC CONSERVATION LAWS WITH RELAXATION ARISING FROM TRAFFIC FLOW , 2003 .

[17]  Alexandre M. Bayen,et al.  Comparison of the performance of four Eulerian network flow models for strategic air traffic management , 2007, Networks Heterog. Media.

[18]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[19]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[20]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[21]  Michel Rascle,et al.  Resurrection of "Second Order" Models of Traffic Flow , 2000, SIAM J. Appl. Math..

[22]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Alexis Vasseur,et al.  Strong Traces for Solutions of Multidimensional Scalar Conservation Laws , 2001 .

[24]  Mauro Garavello,et al.  Conservation laws with discontinuous flux , 2007, Networks Heterog. Media.

[25]  H. Holden,et al.  A mathematical model of traffic flow on a network of unidirectional roads , 1995 .

[26]  N. Bellomo,et al.  First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow , 2005 .

[27]  H. M. Zhang,et al.  Fundamental Diagram of Traffic Flow , 2011 .

[28]  Mauro Garavello,et al.  A Well Posed Riemann Problem for the p-System at a Junction , 2006, Networks Heterog. Media.

[29]  Mauro Garavello,et al.  Traffic Flow on Networks , 2006 .

[30]  Rinaldo M. Colombo,et al.  An $n$-populations model for traffic flow , 2003, European Journal of Applied Mathematics.

[31]  Rinaldo M. Colombo,et al.  Hyperbolic Phase Transitions in Traffic Flow , 2003, SIAM J. Appl. Math..

[32]  Mauro Garavello,et al.  On the Cauchy Problem for the p-System at a Junction , 2008, SIAM J. Math. Anal..

[33]  Dirk Helbing,et al.  Self-organized network flows , 2007, Networks Heterog. Media.

[34]  CIRO D’APICE,et al.  Packet Flow on Telecommunication Networks , 2006, SIAM J. Math. Anal..

[35]  A. Klar,et al.  Congestion on Multilane Highways , 2002, SIAM J. Appl. Math..

[36]  Harold J Payne,et al.  MODELS OF FREEWAY TRAFFIC AND CONTROL. , 1971 .

[37]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[38]  Benedetto Piccoli,et al.  Traffic circles and timing of traffic lights for cars flow , 2005 .

[39]  Benedetto Piccoli,et al.  A Fluid Dynamic Model for T-Junctions , 2008, SIAM J. Math. Anal..

[40]  Axel Klar,et al.  Gas flow in pipeline networks , 2006, Networks Heterog. Media.

[41]  Alberto Bressan,et al.  A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves , 1993 .

[42]  Ciro D'Apice,et al.  A fluid dynamic model for supply chains , 2006, Networks Heterog. Media.

[43]  Georges Bastin,et al.  A second order model of road junctions in fluid models of traffic networks , 2007, Networks Heterog. Media.