Implementation of a spatial light modulator for intracavity beam shaping

In this paper we outline the steps necessary to create a laser with an intra-cavity spatial light modulator (SLM) for transverse mode control. We employ a commercial SLM as the back reflector in an otherwise conventional diode-pumped solid state laser. We show that the geometry of the liquid crystal (LC) arrangement strongly influences the operating regime of the laser, from nominally amplitude-only mode control for twisted nematic LCs to nominally phase-only mode control for parallel-aligned LCs. We demonstrate both operating regimes experimentally and discuss the potential advantages of and improvements to this new technology.

[1]  A. Forbes,et al.  The digital laser: on-demand laser modes with the click of a button , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[2]  A. Forbes,et al.  Intra-cavity generation of superpositions of Laguerre–Gaussian beams , 2012 .

[3]  W. Rigrod ISOLATION OF AXI‐SYMMETRICAL OPTICAL‐RESONATOR MODES , 1963 .

[4]  Naohisa Mukohzaka,et al.  High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator , 1999 .

[5]  L. A. González,et al.  Pixelated phase computer holograms for the accurate encoding of scalar complex fields. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Andrew Forbes,et al.  Digital control of laser modes with an intra-cavity spatial light modulator , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[7]  N. Hodgson,et al.  Laser Resonators and Beam Propagation , 2005 .

[8]  H. Weber,et al.  Laser resonators and beam propagation : fundamentals, advanced concepts and applications , 2005 .

[9]  Jeffrey A. Davis,et al.  Polarization eigenstates for twisted-nematic liquid-crystal displays. , 1998, Applied optics.

[10]  Fred M. Dickey Laser Beam Shaping , 2014 .

[11]  J. Bourderionnet,et al.  Spatial mode control of a diode-pumped Nd:YAG laser by use of an intracavity holographic phase plate. , 2000, Optics letters.

[12]  Y. Lin,et al.  Distributed phase plates for super-Gaussian focal-plane irradiance profiles. , 1995, Optics letters.

[13]  Fred M. Dickey,et al.  Laser beam shaping : theory and techniques , 2000 .

[14]  Q. Mu,et al.  Phase-only liquid crystal spatial light modulator for wavefront correction with high precision. , 2004, Optics express.

[15]  Claudio Iemmi,et al.  Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model , 2001 .

[16]  Wenhan Jiang,et al.  Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror , 2007 .

[17]  David Burns,et al.  Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror. , 2002, Optics express.

[18]  Andrew Forbes,et al.  A digital laser for on-demand laser modes , 2013, Nature Communications.

[19]  Andrew Forbes,et al.  Intra-cavity flat-top beam generation. , 2009, Optics express.

[20]  I. I. Zasavitskii,et al.  Active-region designs in quantum cascade lasers , 2012 .

[21]  Leonid N. Kaptsov,et al.  Given laser output formation: adaptive optics approach--theory and experiment , 1999, Photonics West.

[22]  T. Martin,et al.  Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Tomoaki Eiju,et al.  Optimization of twisted nematic liquid crystal panels for spatial light phase modulation , 1995 .

[24]  Andrew Waddie,et al.  Application of cooled spatial light modulator for high power nanosecond laser micromachining. , 2010, Optics express.