Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests

This paper presents a semi-parametric copula-GARCH risk model for financial return series with a stress testing perspective. The marginal distributions of the returns are specified using the Extreme Value Theory (EVT), putting a specific emphasis on extreme returns. The joint distribution is then built up using the pair-copulas theorem, based on the marginal distributions and the pair dependence structures. The model performance is assessed for three sets of assets, namely equity indices, exchange rates, and commodity prices. The empirical results support a better static and dynamic properties of the presented model compared to most common specifications used in practice. The proposed model and the alternative specifications are then carried out to perform stress testing exercises on hypothetical portfolios, where financial returns are considered as risk factors. The results show that the use of a wide range of risk models produce significantly different results, in terms of the corresponding stress scenario and in the corresponding impact on the portfolios. Hence, considering flexible and consistent specifications, as in the proposed model, allows ensuring a better credibility of the stress scenario and enhances the usefulness of the stress testing results.

[1]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[2]  Claudia Czado,et al.  Maximum likelihood estimation of mixed C-vines with application to exchange rates , 2012 .

[3]  Robert F. Engle,et al.  Testing Macroprudential Stress Tests: The Risk of Regulatory Risk Weights , 2013 .

[4]  Andréas Heinen,et al.  Modeling International Financial Returns with a Multivariate Regime Switching Copula , 2008 .

[5]  Christophe Hurlin,et al.  Backtesting value-at-risk : a GMM duration-based test , 2008 .

[6]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[7]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[8]  R. Engle Dynamic Conditional Correlation : A Simple Class of Multivariate GARCH Models , 2000 .

[9]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[10]  Andrew J. Patton Copula-Based Models for Financial Time Series , 2009 .

[11]  Aristidis K. Nikoloulopoulos,et al.  Vine copulas with asymmetric tail dependence and applications to financial return data , 2012, Comput. Stat. Data Anal..

[12]  A. McNeil,et al.  The Peaks over Thresholds Method for Estimating High Quantiles of Loss Distributions , 1998 .

[13]  Claus Puhr,et al.  Towards a Framework for Quantifying Systemic Stability , 2012 .

[14]  Mixture models for VaR and stress testing , 2001 .

[15]  Imre Csiszár,et al.  Systematic stress tests with entropic plausibility constraints , 2013 .

[16]  Jeremy Berkowitz,et al.  A Coherent Framework for Stress-Testing , 1999 .

[17]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  Matthew T. Jones,et al.  Stress Testing of Financial Systems: An Overview of Issues, Methodologies, and Fsap Experiences , 2001, SSRN Electronic Journal.

[19]  Xin Zhao,et al.  GARCH dependence in extreme value models with Bayesian inference , 2011, Math. Comput. Simul..

[20]  Claudia Czado,et al.  Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..

[21]  B. Jeon,et al.  Dynamic correlation analysis of financial contagion: Evidence from Asian markets , 2007 .

[22]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[23]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .

[24]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[25]  C. Czado,et al.  Truncated regular vines in high dimensions with application to financial data , 2012 .

[26]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[27]  Andrew J. Patton (IAM Series No 001) On the Out-Of-Sample Importance of Skewness and Asymetric Dependence for Asset Allocation , 2002 .

[28]  Systemic Risk in Europe , 2015 .

[29]  Andrew Ang,et al.  International Asset Allocation With Regime Shifts , 2002 .

[30]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[31]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[32]  Matthias Fischer,et al.  An empirical analysis of multivariate copula models , 2009 .

[33]  Beatriz Vaz de Melo Mendes,et al.  Pair-copulas modeling in finance , 2010 .

[34]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[35]  Lei Hua,et al.  Tail order and intermediate tail dependence of multivariate copulas , 2011, J. Multivar. Anal..

[36]  R. Nelsen An Introduction to Copulas , 1998 .

[37]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[38]  Liquidity Stress-Tester: Do Basel III and Unconventional Monetary Policy Work? , 2010 .

[39]  Carol Alexander,et al.  Developing a stress testing framework based on market risk models , 2008 .

[40]  J. End Liquidity Stress-Tester: A Model for Stress-testing Banks’ Liquidity Risk , 2010 .

[41]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[42]  Robert C. Blattberg,et al.  A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices: Reply , 1974 .

[43]  K. Aas,et al.  Models for construction of multivariate dependence – a comparison study , 2009 .

[44]  F. Longin,et al.  Is the Correlation in International Equity Returns Constant: 1960-90? , 1995 .

[45]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[46]  D. Dey,et al.  A General Class of Multivariate Skew-Elliptical Distributions , 2001 .

[47]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[48]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[49]  Robert F. Engle,et al.  Estimates of the Variance of U. S. Inflation Based upon the ARCH Model , 1983 .

[50]  Andrew J. Patton Estimation of multivariate models for time series of possibly different lengths , 2006 .

[51]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[52]  Stress Tests, Maximum Loss, and Value at Risk , 2002 .

[53]  Aristidis K. Nikoloulopoulos,et al.  Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..

[54]  David Greenlaw,et al.  Stressed Out: Macroprudential Principles for Stress Testing , 2012 .

[55]  Kjersti Aas,et al.  The Generalized Hyperbolic Skew Student’s t-Distribution , 2006 .

[56]  W. Härdle,et al.  Inhomogeneous Dependence Modeling with Time-Varying Copulae , 2009 .

[57]  Guofu Zhou,et al.  Asymmetries in Stock Returns: Statistical Tests and Economic Evaluation , 2003 .

[58]  Multivariate stress scenarios and solvency , 2012 .

[59]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[60]  H. Joe Multivariate models and dependence concepts , 1998 .

[61]  S. Poon,et al.  Financial Modeling Under Non-Gaussian Distributions , 2006 .

[62]  Andrew Ang,et al.  Regime Switches in Interest Rates , 1998 .

[63]  Claudia Czado,et al.  Computational Statistics and Data Analysis Regime Switches in the Dependence Structure of Multidimensional Financial Data , 2022 .

[64]  C. Czado,et al.  Bayesian inference for multivariate copulas using pair-copula constructions. , 2010 .

[65]  M. C. Jones,et al.  A skew extension of the t‐distribution, with applications , 2003 .

[66]  Paul H. Kupiec,et al.  Stress Testing in a Value at Risk Framework , 1998 .

[67]  Claudia Czado,et al.  Pair-Copula Constructions of Multivariate Copulas , 2010 .

[68]  K. Stiroh,et al.  Reserve System. Any errors or omissions are the responsibility of the authors. Macroprudential Supervision of Financial Institutions: Lessons from the SCAP , 2009 .

[69]  R. Engle Dynamic Conditional Correlation , 2002 .

[70]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[71]  Ernst Eberlein,et al.  Generalized Hyperbolic and Inverse Gaussian Distributions: Limiting Cases and Approximation of Processes , 2003 .

[72]  Harry Joe,et al.  Parametric families of multivariate distributions with given margins , 1993 .

[73]  Samuel Kotz,et al.  Multivariate T-Distributions and Their Applications , 2004 .

[74]  René Garcia,et al.  Dependence structure and extreme comovements in international equity and bond markets , 2011 .

[75]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[76]  E. Luciano,et al.  Copula methods in finance , 2004 .

[77]  Incorporating Stress Tests into Market Risk Modeling , 2001 .

[78]  Peter Christoffersen,et al.  Série Scientifique Scientific Series 2003 s-05 Backtesting Value-at-Risk : A Duration-Based Approach , 2003 .

[79]  Harry Joe,et al.  Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions , 1996 .

[80]  P. Praetz,et al.  The Distribution of Share Price Changes , 1972 .

[81]  F. Longin,et al.  From value at risk to stress testing : The extreme value approach Franc ß ois , 2000 .

[82]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[83]  Hans Manner,et al.  A Survey on Time-Varying Copulas: Specification, Simulations, and Application , 2012 .

[84]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[85]  Claudio Borio,et al.  Stress-Testing Macro Stress Testing: Does it Live Up to Expectations? , 2012 .

[86]  Christopher C. Finger,et al.  A stress test to incorporate correlation breakdown , 2000 .

[87]  M. Sørensen,et al.  Hyperbolic Processes in Finance , 2003 .

[88]  Dorota Kurowicka,et al.  Dependence Modeling: Vine Copula Handbook , 2010 .

[89]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[90]  C. Czado,et al.  Bayesian model selection for D‐vine pair‐copula constructions , 2011 .

[91]  Aad van der Vaart,et al.  Tail dependence of skewed grouped t-distributions , 2008 .

[92]  Eike Christian Brechmann,et al.  Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine , 2013 .

[93]  Kevin A. Clarke A Simple Distribution-Free Test for Nonnested Model Selection , 2007, Political Analysis.

[94]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[95]  M. Rockinger,et al.  The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .