Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests
暂无分享,去创建一个
[1] Daniel B. Nelson. CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .
[2] Claudia Czado,et al. Maximum likelihood estimation of mixed C-vines with application to exchange rates , 2012 .
[3] Robert F. Engle,et al. Testing Macroprudential Stress Tests: The Risk of Regulatory Risk Weights , 2013 .
[4] Andréas Heinen,et al. Modeling International Financial Returns with a Multivariate Regime Switching Copula , 2008 .
[5] Christophe Hurlin,et al. Backtesting value-at-risk : a GMM duration-based test , 2008 .
[6] Alexander J. McNeil,et al. Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.
[7] T. Bollerslev,et al. Generalized autoregressive conditional heteroskedasticity , 1986 .
[8] R. Engle. Dynamic Conditional Correlation : A Simple Class of Multivariate GARCH Models , 2000 .
[9] A. McNeil,et al. The t Copula and Related Copulas , 2005 .
[10] Andrew J. Patton. Copula-Based Models for Financial Time Series , 2009 .
[11] Aristidis K. Nikoloulopoulos,et al. Vine copulas with asymmetric tail dependence and applications to financial return data , 2012, Comput. Stat. Data Anal..
[12] A. McNeil,et al. The Peaks over Thresholds Method for Estimating High Quantiles of Loss Distributions , 1998 .
[13] Claus Puhr,et al. Towards a Framework for Quantifying Systemic Stability , 2012 .
[14] Mixture models for VaR and stress testing , 2001 .
[15] Imre Csiszár,et al. Systematic stress tests with entropic plausibility constraints , 2013 .
[16] Jeremy Berkowitz,et al. A Coherent Framework for Stress-Testing , 1999 .
[17] O. Barndorff-Nielsen. Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[18] Matthew T. Jones,et al. Stress Testing of Financial Systems: An Overview of Issues, Methodologies, and Fsap Experiences , 2001, SSRN Electronic Journal.
[19] Xin Zhao,et al. GARCH dependence in extreme value models with Bayesian inference , 2011, Math. Comput. Simul..
[20] Claudia Czado,et al. Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..
[21] B. Jeon,et al. Dynamic correlation analysis of financial contagion: Evidence from Asian markets , 2007 .
[22] George E. P. Box,et al. Time Series Analysis: Forecasting and Control , 1977 .
[23] A. McNeil,et al. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .
[24] Q. Vuong. Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .
[25] C. Czado,et al. Truncated regular vines in high dimensions with application to financial data , 2012 .
[26] H. Joe. Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .
[27] Andrew J. Patton. (IAM Series No 001) On the Out-Of-Sample Importance of Skewness and Asymetric Dependence for Asset Allocation , 2002 .
[28] Systemic Risk in Europe , 2015 .
[29] Andrew Ang,et al. International Asset Allocation With Regime Shifts , 2002 .
[30] Andrew J. Patton. Modelling Asymmetric Exchange Rate Dependence , 2006 .
[31] F. Longin,et al. Extreme Correlation of International Equity Markets , 2000 .
[32] Matthias Fischer,et al. An empirical analysis of multivariate copula models , 2009 .
[33] Beatriz Vaz de Melo Mendes,et al. Pair-copulas modeling in finance , 2010 .
[34] E. Eberlein,et al. Hyperbolic distributions in finance , 1995 .
[35] Lei Hua,et al. Tail order and intermediate tail dependence of multivariate copulas , 2011, J. Multivar. Anal..
[36] R. Nelsen. An Introduction to Copulas , 1998 .
[37] P. Embrechts,et al. Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .
[38] Liquidity Stress-Tester: Do Basel III and Unconventional Monetary Policy Work? , 2010 .
[39] Carol Alexander,et al. Developing a stress testing framework based on market risk models , 2008 .
[40] J. End. Liquidity Stress-Tester: A Model for Stress-testing Banks’ Liquidity Risk , 2010 .
[41] M. Steel,et al. On Bayesian Modelling of Fat Tails and Skewness , 1998 .
[42] Robert C. Blattberg,et al. A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices: Reply , 1974 .
[43] K. Aas,et al. Models for construction of multivariate dependence – a comparison study , 2009 .
[44] F. Longin,et al. Is the Correlation in International Equity Returns Constant: 1960-90? , 1995 .
[45] B. Mandelbrot. The Variation of Certain Speculative Prices , 1963 .
[46] D. Dey,et al. A General Class of Multivariate Skew-Elliptical Distributions , 2001 .
[47] A. Azzalini,et al. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.
[48] Andrew Ang,et al. Asymmetric Correlations of Equity Portfolios , 2001 .
[49] Robert F. Engle,et al. Estimates of the Variance of U. S. Inflation Based upon the ARCH Model , 1983 .
[50] Andrew J. Patton. Estimation of multivariate models for time series of possibly different lengths , 2006 .
[51] Roger M. Cooke,et al. Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .
[52] Stress Tests, Maximum Loss, and Value at Risk , 2002 .
[53] Aristidis K. Nikoloulopoulos,et al. Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..
[54] David Greenlaw,et al. Stressed Out: Macroprudential Principles for Stress Testing , 2012 .
[55] Kjersti Aas,et al. The Generalized Hyperbolic Skew Student’s t-Distribution , 2006 .
[56] W. Härdle,et al. Inhomogeneous Dependence Modeling with Time-Varying Copulae , 2009 .
[57] Guofu Zhou,et al. Asymmetries in Stock Returns: Statistical Tests and Economic Evaluation , 2003 .
[58] Multivariate stress scenarios and solvency , 2012 .
[59] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[60] H. Joe. Multivariate models and dependence concepts , 1998 .
[61] S. Poon,et al. Financial Modeling Under Non-Gaussian Distributions , 2006 .
[62] Andrew Ang,et al. Regime Switches in Interest Rates , 1998 .
[63] Claudia Czado,et al. Computational Statistics and Data Analysis Regime Switches in the Dependence Structure of Multidimensional Financial Data , 2022 .
[64] C. Czado,et al. Bayesian inference for multivariate copulas using pair-copula constructions. , 2010 .
[65] M. C. Jones,et al. A skew extension of the t‐distribution, with applications , 2003 .
[66] Paul H. Kupiec,et al. Stress Testing in a Value at Risk Framework , 1998 .
[67] Claudia Czado,et al. Pair-Copula Constructions of Multivariate Copulas , 2010 .
[68] K. Stiroh,et al. Reserve System. Any errors or omissions are the responsibility of the authors. Macroprudential Supervision of Financial Institutions: Lessons from the SCAP , 2009 .
[69] R. Engle. Dynamic Conditional Correlation , 2002 .
[70] T. Bedford,et al. Vines: A new graphical model for dependent random variables , 2002 .
[71] Ernst Eberlein,et al. Generalized Hyperbolic and Inverse Gaussian Distributions: Limiting Cases and Approximation of Processes , 2003 .
[72] Harry Joe,et al. Parametric families of multivariate distributions with given margins , 1993 .
[73] Samuel Kotz,et al. Multivariate T-Distributions and Their Applications , 2004 .
[74] René Garcia,et al. Dependence structure and extreme comovements in international equity and bond markets , 2011 .
[75] R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .
[76] E. Luciano,et al. Copula methods in finance , 2004 .
[77] Incorporating Stress Tests into Market Risk Modeling , 2001 .
[78] Peter Christoffersen,et al. Série Scientifique Scientific Series 2003 s-05 Backtesting Value-at-Risk : A Duration-Based Approach , 2003 .
[79] Harry Joe,et al. Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions , 1996 .
[80] P. Praetz,et al. The Distribution of Share Price Changes , 1972 .
[81] F. Longin,et al. From value at risk to stress testing : The extreme value approach Franc ß ois , 2000 .
[82] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[83] Hans Manner,et al. A Survey on Time-Varying Copulas: Specification, Simulations, and Application , 2012 .
[84] A. Frigessi,et al. Pair-copula constructions of multiple dependence , 2009 .
[85] Claudio Borio,et al. Stress-Testing Macro Stress Testing: Does it Live Up to Expectations? , 2012 .
[86] Christopher C. Finger,et al. A stress test to incorporate correlation breakdown , 2000 .
[87] M. Sørensen,et al. Hyperbolic Processes in Finance , 2003 .
[88] Dorota Kurowicka,et al. Dependence Modeling: Vine Copula Handbook , 2010 .
[89] Roger M. Cooke,et al. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.
[90] C. Czado,et al. Bayesian model selection for D‐vine pair‐copula constructions , 2011 .
[91] Aad van der Vaart,et al. Tail dependence of skewed grouped t-distributions , 2008 .
[92] Eike Christian Brechmann,et al. Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine , 2013 .
[93] Kevin A. Clarke. A Simple Distribution-Free Test for Nonnested Model Selection , 2007, Political Analysis.
[94] B. Hansen. Autoregressive Conditional Density Estimation , 1994 .
[95] M. Rockinger,et al. The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .