Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET
暂无分享,去创建一个
Michael A. P. McAuliffe | V. Freudenthaler | L. Mona | P. Seifert | A. Ansmann | I. Serikov | I. Mattis | U. Wandinger | V. Mitev | M. Haeffelin | J. Cuesta | C. Pietras | M. Pujadas | G. Pappalardo | A. Amodeo | N. Spinelli | A. Boselli | A. Apituley | G. D'Amico | D. Balis | A. Comerón | D. Nicolae | A. Papayannis | M. Perrone | A. Pietruczuk | V. Rizi | V. Simeonov | T. Trickl | M. Wiegner | I. Grigorov | M. Iarlori | Xuan Wang | S. Groß | H. Linne | M. Sicard | J. Bravo-Aranda | Aldo Giunta | D. Lange | R. Mamouri | F. Molero | F. Navas-Guzmán | J. Preißler | F. Wagner | E. Giannakaki | G. Pisani | A. Chaikovsky | M. Tesche | A. Hiebsch | F. Madonna | F. Schnell | F. D. Tomasi | M. Adam | L. Arboledas | M. Gausa | H. Giehl | A. Ruth | J. Schmidt | K. Stebel | K. Wilson | G. D’Amico | A. Giunta | Jörg Schmidt
[1] A. Stohl,et al. Interpolation Errors in Wind Fields as a Function of Spatial and Temporal Resolution and Their Impact on Different Types of Kinematic Trajectories , 1995 .
[2] Mark R. Schoeberl,et al. A multiple‐level trajectory analysis of vortex filaments , 1995 .
[3] Makiko Sato,et al. The missing climate forcing , 1997 .
[4] A. Stohl. Computation, accuracy and applications of trajectories—A review and bibliography , 1998 .
[5] A. Ansmann,et al. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.
[6] Raymond M. Hoff,et al. The Detection of Mixed Layer Depth and Entrainment Zone Thickness from Lidar Backscatter Profiles , 1999 .
[7] A. Robock. Volcanic eruptions and climate , 2000 .
[8] T. Trickl,et al. Highlights of the tropospheric lidar studies at IFU within the TOR project , 2002 .
[9] U. Wandinger,et al. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. , 2002, Applied optics.
[10] A. Stohl,et al. Forecast, observation and modelling of a deep stratospheric intrusion event over Europe , 2003 .
[11] V. Freudenthaler,et al. Long-range transport of Saharan dust to northern Europe : The 11-16 October 2001 outbreak observed with EARLINET , 2003 .
[12] Michael Sprenger,et al. Stratosphere‐troposphere exchange: A review, and what we have learned from STACCATO , 2003 .
[13] Vincenzo Cuomo,et al. Transport of volcanic aerosol in the troposphere: The case study of the 2002 Etna plume , 2004 .
[14] A. Ansmann,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.
[15] Nobuo Sugimoto,et al. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia , 2004 .
[16] L. Mona,et al. Raman lidar observations of aerosol emitted during the 2002 Etna eruption , 2004 .
[17] A. Ansmann,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms. , 2004, Applied optics.
[18] V. Freudenthaler,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004, Applied optics.
[19] Alexandros Papayannis,et al. Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations , 2004 .
[20] H. Jäger. Long‐term record of lidar observations of the stratospheric aerosol layer at Garmisch‐Partenkirchen , 2005 .
[21] C. Böckmann,et al. Microphysical aerosol parameters from multiwavelength lidar. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.
[22] H. Jäger,et al. Trends in the nonvolcanic component of stratospheric aerosol over the period 1971–2004 , 2006 .
[23] L. Mona,et al. Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements , 2006 .
[24] A. Ansmann,et al. Multiwavelength Raman lidar observations of particle growth during long‐range transport of forest‐fire smoke in the free troposphere , 2007 .
[25] L. Mona,et al. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002) , 2008 .
[26] T. Deshler. A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol , 2008 .
[27] A. Stohl,et al. Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements , 2008 .
[28] A. Stohl,et al. Volcanic dust characterization by EARLINET during Etna's eruptions in 2001–2002 , 2008 .
[29] F. Olmo,et al. Extreme Saharan dust event over the southern Iberian Peninsula in september 2007: active and passive remote sensing from surface and satellite , 2009 .
[30] Albert Ansmann,et al. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 , 2009 .
[31] Michael Sprenger,et al. Forecasted deep stratospheric intrusions over Central Europe: case studies and climatologies , 2009 .
[32] E. Giannakaki,et al. EARLINET observations of the 14–22-May long-range dust transport event during SAMUM 2006: validation of results from dust transport modelling , 2009 .
[33] V. Freudenthaler,et al. EARLINET correlative measurements for CALIPSO: First intercomparison results , 2010 .
[34] Doina Nicolae,et al. EARLINET observations of the Eyjafjallajökull ash plume over Europe , 2010, Remote Sensing.
[35] V. Freudenthaler,et al. The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany , 2010 .
[36] U. Schumann,et al. Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010 , 2010 .
[37] W. Steinbrecht,et al. The Eyjafjallajökull eruption in April 2010 – detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles , 2010 .
[38] W. Steinbrecht,et al. The Eyjafjallajökull eruption in April 2010 - detection of volcanic plume using in-situ measurements, ozone sondes and a new generation ceilometer network , 2010 .
[39] A. Ansmann,et al. Volcanic aerosol layers observed with multiwavelength Raman lidar over central Europe in 2008–2009 , 2010 .
[40] R. Draxler. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website , 2010 .
[41] Arnau Folch,et al. Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April–May 2010 , 2012 .
[42] Josef Gasteiger,et al. Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements , 2010 .
[43] Eyjafjallajökull volcano ash observed over Belsk (52° N, 21° E), Poland, in April 2010 , 2010 .
[44] Albert Ansmann,et al. Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010 , 2011 .
[45] V. Freudenthaler,et al. The May/June 2008 Saharan dust event over Munich: Intensive aerosol parameters from lidar measurements , 2011 .
[46] Albert Ansmann,et al. Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations , 2011 .
[47] Kerstin Stebel,et al. Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption , 2011 .
[48] T. Leisner,et al. Ice nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010 , 2011 .
[49] Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010 , 2011 .
[50] H. Bingemer,et al. Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume , 2011 .
[51] L. Mona,et al. Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy , 2011 .
[52] Stefan Emeis,et al. Measurement and simulation of the 16/17 April 2010 Eyjafjallajökull volcanic ash layer dispersion in the northern Alpine region , 2011 .
[53] Pordur Arason,et al. Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April-May 2010 , 2011 .
[54] M. Gouhier,et al. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France , 2011 .
[55] A. Robock,et al. SIMULATION AND OBSERVATIONS OF STRATOSPHERIC AEROSOLS FROM THE 2009 SARYCHEV VOLCANIC ERUPTION , 2011 .
[56] Albert Ansmann,et al. Ice formation in ash‐influenced clouds after the eruption of the Eyjafjallajökull volcano in April 2010 , 2011 .
[57] L. Alados-Arboledas,et al. Monitoring of the Eyjafjallajökull volcanic aerosol plume over the Iberian Peninsula by means of four EARLINET lidar stations , 2011 .
[58] R. Neely,et al. The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change , 2011, Science.
[59] R. Hogan,et al. Determining the contribution of volcanic ash and boundary layer aerosol in backscatter lidar returns: A three‐component atmosphere approach , 2011 .
[60] B. Luo,et al. Ice nucleation properties of volcanic ash from Eyjafjallajökull , 2011 .
[61] Franco Marenco,et al. Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume , 2011 .
[62] Harald Flentje,et al. Influences of the 2010 Eyjafjallajökull volcanic plume on air quality in the northern Alpine region , 2011 .
[63] Franco Marenco,et al. A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 2. Airborne and satellite radiative measurements , 2012 .
[64] V. Freudenthaler,et al. Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany , 2012 .
[65] A. Stohl,et al. Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010 , 2012 .
[66] Ina Mattis,et al. The ash dispersion over Europe during the Eyjafjallajökull eruption – Comparison of CMAQ simulations to remote sensing and air-borne in-situ observations , 2012 .
[67] Albert Ansmann,et al. Simulations of the 2010 Eyjafjallajökull volcanic ash dispersal over Europe using COSMO–MUSCAT , 2012 .
[68] U. Schumann,et al. A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 1. In situ airborne observations , 2012 .
[69] Zhaoyan Liu,et al. CALIOP observations of the transport of ash from the Eyjafjallajökull volcano in April 2010 , 2012 .
[70] L. Mona,et al. Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere , 2012 .
[71] A. Stohl,et al. Integration of measurements and model simulations to characterize Eyjafjallajökull volcanic aerosols over south-eastern Italy , 2012 .
[72] H. Jäger,et al. 35 years of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond , 2012 .
[73] Detlef Müller,et al. Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece , 2012 .
[74] Patrick Chazette,et al. French airborne lidar measurements for Eyjafjallajökull ash plume survey , 2012 .
[75] Martin Riese,et al. Lidar observation and model simulation of a volcanic-ash-induced cirrus cloud during the Eyjafjallajökull eruption , 2012 .
[76] V. Freudenthaler,et al. Characterization of the Eyjafjallajökull ash-plume: Potential of lidar remote sensing , 2012 .
[77] L. Alados-Arboledas,et al. Eruption of the Eyjafjallajökull Volcano in spring 2010: Multiwavelength Raman lidar measurements of sulphate particles in the lower troposphere , 2013 .