Use of Synthetic Aperture Radar in Finescale Surface Analysis of Synoptic-Scale Fronts at Sea

The viability of synthetic aperture radar (SAR) as a tool for finescale marine meteorological surface analyses of synoptic-scale fronts is demonstrated. In particular, it is shown that SAR can reveal the presence of, and the mesoscale and microscale substructures associated with, synoptic-scale cold fronts, warm fronts, occluded fronts, and secluded fronts. The basis for these findings is the analysis of some 6000 RADARSAT-1 SAR images from the Gulf of Alaska and from off the east coast of North America. This analysis yielded 158 cases of well-defined frontal signatures: 22 warm fronts, 37 cold fronts, 3 stationary fronts, 32 occluded fronts, and 64 secluded fronts. The potential synergies between SAR and a range of other data sources are discussed for representative fronts of each type.

[1]  George S. Young,et al.  Mesoscale Stratocumulus Bands Caused by Gulf Stream Meanders , 2003 .

[2]  Diabatic Modification of an Extratropical Marine Cyclone Warm Sector by Cold Underlying Water , 1990 .

[3]  Werner Alpers,et al.  Observation of a nonlinear wave disturbance in the marine atmosphere by the synthetic aperture radar aboard the ERS 1 satellite , 1996 .

[4]  Paul J. Neiman,et al.  The Life Cycle of an Extratropical Marine Cyclone. Part II: Mesoscale Structure and Diagnostics , 1993 .

[5]  M. Shapiro,et al.  The Life Cycle of an Extratropical Marine Cyclone. Part I: Frontal-Cyclone Evolution and Thermodynamic Air-Sea Interaction , 1993 .

[6]  Pablo Clemente-Colon,et al.  Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[7]  Mark A. Jervis,et al.  The Life-cycle , 1996 .

[8]  Ying-Hwa Kuo,et al.  Thermal Structure and Airflow in a Model Simulation of an Occluded Marine Cyclone , 1992 .

[9]  Toby N. Carlson,et al.  Airflow Through Midlatitude Cyclones and the Comma Cloud Pattern , 1980 .

[10]  Robert C. Beal,et al.  Spaceborne synthetic aperture radar for oceanography , 1981 .

[11]  George S. Young,et al.  Use of Spaceborne Synthetic Aperture Radar Imagery of the Sea Surface in Detecting the Presence and Structure of the Convective Marine Atmospheric Boundary Layer , 1995 .

[12]  I. Orlanski A rational subdivision of scales for atmospheric processes , 1975 .

[13]  G. Young,et al.  Convective Wakes in the Equatorial Western Pacific during TOGA , 1995 .

[14]  Application of Over-the-Horizon Radar Observations to Synoptic and Mesoanalysis over the Atlantic , 1997 .

[15]  J. Simpson,et al.  Effects of the lower boundary on the head of a gravity current , 1972, Journal of Fluid Mechanics.

[16]  Jonathan E. Martin Quasigeostrophic Forcing of Ascent in the Occluded Sector of Cyclones and the Trowal Airstream , 1999 .

[17]  Donald R. Thompson,et al.  The influence of the marine atmospheric boundary layer on ERS 1 synthetic aperture radar imagery of the Gulf Stream , 1997 .

[18]  Paris W. Vachon,et al.  ERS-1 SAR images of atmospheric gravity waves , 1995, IEEE Trans. Geosci. Remote. Sens..

[19]  Robert B. Wilhelmson,et al.  The Numerical Simulation of Non-Supercell Tornadogenesis. Part I: Initiation and Evolution of Pretornadic Misocyclone Circulations along a Dry Outflow Boundary , 1997 .

[20]  David B. Parsons,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XI: Comparisons between Observational and Theoretical Aspects of Rainbands , 1983 .

[21]  Fredrik Carlsson,et al.  Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. The lobe-and-cleft instability , 2000, Journal of Fluid Mechanics.

[22]  L. Bosart,et al.  The Effect of Large-Scale Flow on Low-Level Frontal Structure and Evolution in Midlatitude Cyclones , 1998 .

[23]  Bruce D. Lee,et al.  The Numerical Simulation of Non-Supercell Tornadogenesis , 1995 .

[24]  Todd D. Sikora,et al.  Using Spaceborne Synthetic Aperture Radar to Improve Marine Surface Analyses , 2001 .

[25]  Jochen Horstmann,et al.  Detection of wave groups in SAR images and radar image sequences , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  Eckart Meiburg,et al.  Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries , 2000, Journal of Fluid Mechanics.

[27]  Frank Monaldo The Alaska SAR demonstration and near-real-time synthetic aperture radar winds , 2000 .

[28]  Mark A. Bourassa,et al.  Effects of Rain Rate and Wind Magnitude on SeaWinds Scatterometer Wind Speed Errors , 2002 .

[29]  George S. Young,et al.  Estimating Convective Atmospheric Boundary Layer Depth from Microwave Radar Imagery of the Sea Surface , 1997 .

[30]  Pierre D. Mourad,et al.  Footprints of Atmospheric Phenomena in Synthetic Aperture Radar Images of the Ocean Surface: A Review , 1999 .

[31]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[32]  Jochen Horstmann,et al.  Global wind speed retrieval from SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[33]  Pablo Clemente-Colon,et al.  A systematic comparison of QuikSCAT and SAR ocean surface wind speeds , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[34]  F. Martin Ralph Observations of 250-km-wavelength clear-air-eddies and 750-km-wavelength mesocyclones associated with a synoptic-scale midlatitude cyclone , 1996 .

[35]  Steven M. Babin,et al.  A Case Study of Satellite Synthetic Aperture Radar Signatures of Spatially Evolving Atmospheric Convection over the Western Atlantic Ocean , 2003 .

[36]  Christopher R. Jackson,et al.  Synthetic aperture radar : marine user's manual , 2004 .

[37]  P. Vachon,et al.  Applications Of Synthetic Aperture Radar InMarine Meteorology , 2006 .

[38]  T. Sikora,et al.  Direct Influence of Gravity Waves on Surface-Layer Stress during a Cold Air Outbreak, as shown by Synthetic Aperture Radar , 2002 .

[39]  Lance F. Bosart Whither the Weather Analysis and Forecasting Process , 2003 .

[40]  Richard H. Johnson,et al.  Meso- and microscale features of a Colorado cold front , 1984 .