Two new regularity criteria for the Navier-Stokes equations via two entries of the velocity Hessian tensor

Abstract We consider the Cauchy problem for the incompressible Navier–Stokes equations in R 3 , and provide two sufficient conditions to ensure the smoothness of solutions. Both of them only involve two entries of the velocity Hessian tensor.

[1]  H. Sohr,et al.  Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes , 1983 .

[2]  Yong Zhou,et al.  Direction of vorticity and a new regularity criterion for the Navier-Stokes equations , 2005, The ANZIAM Journal.

[3]  Peng Li,et al.  Two New Regularity Criteria for the 3D Navier-Stokes Equations via Two Entries of the Velocity Gradient Tensor , 2013 .

[4]  R. Temam Navier-Stokes Equations , 1977 .

[5]  Patrick Penel,et al.  Anisotropic and Geometric Criteria for Interior Regularity of Weak Solutions to the 3D Navier—Stokes Equations , 2001 .

[6]  Zujin Zhang Remarks on the regularity criteria for generalized MHD equations , 2011 .

[7]  Jiahong Wu,et al.  Generalized MHD equations , 2003 .

[8]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[9]  Yong Zhou,et al.  Remarks on regularities for the 3D MHD equations , 2005 .

[10]  H.BeirāodaVeiga A New Regularity Class for the Navier-Stokes Equations in IR^n , 1995 .

[11]  Edriss S. Titi,et al.  GLOBAL REGULARITY CRITERION FOR THE 3 D NAVIER – STOKES EQUATIONS INVOLVING ONE ENTRY OF THE VELOCITY GRADIENT TENSOR By Chongsheng Cao and , 2010 .

[12]  Yong Zhou,et al.  A New Regularity Criterion for the Navier-Stokes Equations in Terms of the Direction of Vorticity , 2005 .

[13]  Luigi C. Berselli,et al.  On the regularizing effect of the vorticity direction in incompressible viscous flows , 2002, Differential and Integral Equations.

[14]  Luigi C. Berselli,et al.  Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations , 2002 .

[15]  Yong Zhou,et al.  On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $$\mathbb{R}^{N}$$ , 2006 .

[16]  Yong Zhou,et al.  On a regularity criterion for the Navier–Stokes equations involving gradient of one velocity component , 2009 .

[17]  Yong Zhou,et al.  Regularity criteria for the 3D MHD equations in terms of the pressure , 2006 .

[18]  Zhouping Xin,et al.  On the regularity of weak solutions to the magnetohydrodynamic equations , 2005 .

[19]  Jae Myoung Kim On regularity criteria of the Navier–Stokes equations in bounded domains , 2010 .

[20]  Wolf von Wahl,et al.  On the regularity of the pressure of weak solutions of Navier-Stokes equations , 1986 .

[21]  Yong Zhou,et al.  A new regularity criterion for weak solutions to the Navier–Stokes equations , 2005 .

[22]  Igor Kukavica,et al.  Navier-Stokes equations with regularity in one direction , 2007 .

[23]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[24]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[25]  Igor Kukavica,et al.  One component regularity for the Navier–Stokes equations , 2006 .

[26]  J. Serrin The initial value problem for the Navier-Stokes equations , 1963 .

[27]  Milan Pokorný,et al.  On Anisotropic Regularity Criteria for the Solutions to 3D Navier–Stokes Equations , 2011 .

[28]  Dongho Chae,et al.  Remark on a regularity criterion in terms of pressure for the Navier-Stokes equations , 2011 .

[29]  Jiahong Wu,et al.  Regularity Criteria for the Generalized MHD Equations , 2008 .

[30]  Yong Zhou,et al.  On regularity criteria in terms of pressure for the Navier-Stokes equations in ℝ³ , 2005 .

[31]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[32]  Zheng-an Yao,et al.  Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations , 2011 .

[33]  Zujin Zhang A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component , 2012 .

[34]  Yong Zhou,et al.  Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain , 2004 .

[35]  Zhang Zhifei,et al.  Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in R 3 , 2005 .

[36]  V. Sverák,et al.  Backward Uniqueness for Parabolic Equations , 2003 .

[37]  Xicheng Zhang,et al.  A regularity criterion for the solutions of 3D Navier–Stokes equations , 2008 .

[38]  Yong Zhou,et al.  A New Regularity Criterion for the Navier-Stokes Equations in Terms of the Gradient of One Velocity Component , 2002 .

[39]  Song Jiang,et al.  On regularity criteria for the n-dimensional Navier–Stokes equations in terms of the pressure , 2008 .

[40]  Yong Zhou,et al.  On the regularity of the solutions of the Navier–Stokes equations via one velocity component , 2010 .

[41]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[42]  Chongsheng Cao,et al.  Sufficient conditions for the regularity to the 3 D Navier-Stokes equations , 2009 .

[43]  Edriss S. Titi,et al.  Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .