Role and Regulation of Bacillus subtilisGlutamate Dehydrogenase Genes

ABSTRACT The complete Bacillus subtilis genome contains two genes with the potential to encode glutamate dehydrogenase (GlutDH) enzymes. Mutations in these genes were constructed and characterized. The rocG gene proved to encode a major GlutDH whose synthesis was induced in media containing arginine or ornithine or, to a lesser degree, proline and was repressed by glucose. ArocG null mutant was impaired in utilization of arginine, ornithine, and proline as nitrogen or carbon sources. ThegudB gene was expressed under all growth conditions tested but codes for a GlutDH that seemed to be intrinsically inactive. Spontaneous mutations in gudB that removed a 9-bp direct repeat within the wild-type gudB sequence activated the GudB protein and allowed more-efficient utilization of amino acids of the glutamate family.

[1]  F. Slack,et al.  A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon , 1995, Molecular microbiology.

[2]  E. Freese,et al.  Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity , 1977, Journal of bacteriology.

[3]  L. Wray,et al.  TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. C. P. Moran RNA Polymerase and Transcription Factors , 1993 .

[5]  T. Wilkins,et al.  Identification of the latex test-reactive protein of Clostridium difficile as glutamate dehydrogenase , 1991, Journal of clinical microbiology.

[6]  M. Débarbouillé,et al.  Role of the transcriptional activator RocR in the arginine‐degradation pathway of Bacillus subtilis , 1997, Molecular microbiology.

[7]  D W Rice,et al.  Conformational flexibility in glutamate dehydrogenase. Role of water in substrate recognition and catalysis. , 1993, Journal of molecular biology.

[8]  M. McPherson,et al.  The glutamate dehydrogenase gene of Clostridium symbiosum. Cloning by polymerase chain reaction, sequence analysis and over-expression in Escherichia coli. , 1992, European journal of biochemistry.

[9]  P Glaser,et al.  RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators , 1994, Journal of bacteriology.

[10]  B. Goldin,et al.  L-Glutamate Dehydrogenases* , 1971 .

[11]  S. Ehrlich,et al.  Sequence analysis of the Bacillus subtilis chromosome region between the serA and kdg loci cloned in a yeast artificial chromosome. , 1996, Microbiology.

[12]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[13]  T. Smith,et al.  Plasmid-determined bleomycin resistance in Staphylococcus aureus. , 1987, Plasmid.

[14]  A Danchin,et al.  Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333deg; , 1993, Molecular microbiology.

[15]  J A Chudek,et al.  The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. , 1990, Journal of general microbiology.

[16]  R. Losick,et al.  Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics , 1993 .

[17]  M. Itaya Construction of a novel tetracycline resistance gene cassette useful as a marker on the Bacillus subtilis chromosome. , 1992, Bioscience, biotechnology, and biochemistry.

[18]  K. Hirschi,et al.  Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene. , 1989, Journal of molecular biology.

[19]  M. Débarbouillé,et al.  Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. , 1995, Journal of molecular biology.

[20]  F. Young,et al.  New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. , 1984, Gene.

[21]  J. Hoch,et al.  spo0 Genes, the Phosphorelay, and the Initiation of Sporulation , 1993 .

[22]  M. McPherson,et al.  The glutamate dehydrogenase gene of Clotridium symbiosum , 1992 .

[23]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[25]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[26]  A. Sonenshein,et al.  Positive regulation of glutamate biosynthesis in Bacillus subtilis , 1989, Journal of bacteriology.

[27]  M. Débarbouillé,et al.  The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[28]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[29]  S Baumberg,et al.  Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA‐mediated assembly of a transcriptional activator at catabolic sites , 1997, Molecular microbiology.

[30]  A. Fouet,et al.  A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis , 1990, Journal of bacteriology.

[31]  A. Sonenshein,et al.  Sites required for GltC-dependent regulation of Bacillus subtilis glutamate synthase expression , 1995, Journal of bacteriology.

[32]  J. Kane,et al.  Regulation of glutamate dehydrogenase in Bacillus subtilis , 1981, Journal of Bacteriology.

[33]  V. Méjean,et al.  An unorthodox sensor protein (TorS) mediates the induction of the tor structural genes in response to trimethylamine N‐oxide in Escherichia coli , 1996, Molecular Microbiology.

[34]  A. Sonenshein,et al.  Mutations in GltC that increase Bacillus subtilis gltA expression , 1995, Journal of bacteriology.

[35]  H. Schreier Biosynthesis of Glutamine and Glutamate and the Assimilation of Ammonia , 1993 .

[36]  A. Sonenshein,et al.  An lrp-like gene of Bacillus subtilis involved in branched-chain amino acid transport , 1997, Journal of bacteriology.

[37]  W. D. de Vos,et al.  The glutamate dehydrogenase-encoding gene of the hyperthermophilic archaeon Pyrococcus furiosus: sequence, transcription and analysis of the deduced amino acid sequence. , 1993, Gene.

[38]  W. Nicholson,et al.  Catabolite repression of α amylase gene expression in Bacillus subtilis involves a trans‐acting gene product homologous to the Escherichia coli lacl and galR repressors , 1991, Molecular microbiology.

[39]  B. Austen,et al.  5 Glutamate Dehydrogenases , 1975 .

[40]  P. Burkholder,et al.  Induced biochemical mutations in Bacillus subtilis. , 1947, American journal of botany.

[41]  A. Sonenshein,et al.  Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system , 1992, Journal of bacteriology.

[42]  J H Miller,et al.  Genetic studies of the lac repressor. I. Correlation of mutational sites with specific amino acid residues: construction of a colinear gene-protein map. , 1977, Journal of molecular biology.

[43]  K. Britton,et al.  Subunit assembly and active site location in the structure of glutamate dehydrogenase , 1992, Proteins.

[44]  J. Miller,et al.  Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. , 1978, Journal of molecular biology.

[45]  L. Wray,et al.  The Bacillus subtilis ureABC operon , 1997, Journal of bacteriology.

[46]  C. Anagnostopoulos,et al.  REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS , 1961, Journal of bacteriology.

[47]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[48]  M. Achtman,et al.  A global gene pool in the neisseriae. , 1996, Molecular microbiology.

[49]  K. S. Yip,et al.  The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. , 1995, Structure.

[50]  M. Strauch AbrB, a Transition State Regulator , 1993 .