Parallel Replica Exchange Monte Carlo Applied to Hard Systems

In this chapter we show how the replica exchange Monte Carlo algorithm can be used to study hard systems, i.e. systems composed by hard particles such as spheres, ellipsoids, disks, and ellipses, among others. The method is based on the definition of an extended ensemble which usually uses temperature as the expansion variable. This way, the low temperature replicas perform local sampling on the configuration space while high temperature replicas produce large jumps. The replica swap moves allow for a low temperature replica to heat, reach another region of configuration space, and cool back, enhancing the sampling of low-temperature, uneven free energy landscapes. Each replica is handled by a single thread making the parallelization straightforward. On the other hand, hard particles cannot overlap and do not contribute to the potential energy. In this case we carry out a pressure expansion of the isothermal-isobaric ensemble. Here we show how this expansion is able to resolve the phase diagrams of hard systems in two and three dimensions.

[1]  Marshall N. Rosenbluth,et al.  Further Results on Monte Carlo Equations of State , 1954 .

[2]  Salvatore Torquato,et al.  Computer simulations of dense hard‐sphere systems , 1996 .

[3]  Pusey,et al.  Observation of a glass transition in suspensions of spherical colloidal particles. , 1987, Physical review letters.

[4]  S. B. Yuste,et al.  Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[6]  M. Deem,et al.  A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.

[7]  Hansen,et al.  Phase separation of asymmetric binary hard-sphere fluids. , 1991, Physical review letters.

[8]  Jiye Fang,et al.  Superlattices with non-spherical building blocks , 2010 .

[9]  Simple monoclinic crystal phase in suspensions of hard ellipsoids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Replica exchange Monte Carlo applied to hard spheres. , 2009, The Journal of chemical physics.

[11]  Ludovic Berthier,et al.  Glass transition of dense fluids of hard and compressible spheres. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[13]  J. Pablo,et al.  Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model , 1999 .

[14]  P. Damasceno,et al.  Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. , 2011, ACS nano.

[15]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[16]  J. Perram,et al.  Statistical Mechanics of Hard Ellipsoids. I. Overlap Algorithm and the Contact Function , 1985 .

[17]  L. An,et al.  Hard ellipses: Equation of state, structure, and self-diffusion. , 2012, The Journal of chemical physics.

[18]  C. Chanéac,et al.  Lyotropic lamellar phase doped with a nematic phase of magnetic nanorods. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[19]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[20]  Toby S. Hudson,et al.  New High-Density Packings of Similarly Sized Binary Spheres , 2011 .

[21]  G. Odriozola Revisiting the phase diagram of hard ellipsoids. , 2012, The Journal of chemical physics.

[22]  J. D. de Pablo,et al.  Optimal allocation of replicas in parallel tempering simulations. , 2005, The Journal of chemical physics.

[23]  Baofeng Zhang,et al.  Asynchronous replica exchange software for grid and heterogeneous computing , 2015, Comput. Phys. Commun..

[24]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[25]  Alfons van Blaaderen,et al.  Real-Space Structure of Colloidal Hard-Sphere Glasses , 1995, Science.

[26]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[27]  S. Glotzer,et al.  Liquid crystal order in colloidal suspensions of spheroidal particles by direct current electric field assembly. , 2012, Small.

[28]  J Hernández-Rojas,et al.  Microcanonical versus canonical analysis of protein folding. , 2008, Physical review letters.

[29]  Ludovic Berthier,et al.  Equilibrium equation of state of a hard sphere binary mixture at very large densities using replica exchange Monte Carlo simulations. , 2010, The Journal of chemical physics.

[30]  D. Frenkel,et al.  Phase behavior of two-dimensional hard rod fluids , 2000 .

[31]  Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement. , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  Aleksandar Donev,et al.  Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Particles. I. Algorithmic Details II. Applications to Ellipses and Ellipsoids , 2004 .

[33]  D. Frenkel,et al.  Monte Carlo simulation of two-dimensional hard ellipses. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[34]  P. Harrowell,et al.  Stability and structure of a supercooled liquid mixture in two dimensions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  L. Manna,et al.  Phase diagram of octapod-shaped nanocrystals in a quasi-two-dimensional planar geometry. , 2013, The Journal of chemical physics.

[36]  Bruce,et al.  Freezing by monte carlo phase switch , 2000, Physical review letters.

[37]  Self-diffusion in two-dimensional hard ellipsoid suspensions. , 2010, The Journal of chemical physics.

[38]  P. Coveney,et al.  Interface deformations affect the orientation transition of magnetic ellipsoidal particles adsorbed at fluid-fluid interfaces. , 2014, Soft matter.

[39]  F. Vesely Nematic-smectic transition of parallel hard spheroellipsoids. , 2014, The Journal of chemical physics.

[40]  P. Yang,et al.  Langmuir-Blodgett nanorod assembly. , 2001, Journal of the American Chemical Society.

[41]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[42]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[43]  Jacques Vieillard‐Baron,et al.  Phase Transitions of the Classical Hard‐Ellipse System , 1972 .

[44]  J. P. Straley,et al.  Liquid Crystals in Two Dimensions , 1971 .

[45]  Aleksandar Donev,et al.  Unusually dense crystal packings of ellipsoids. , 2004, Physical Review Letters.

[46]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[47]  A. Arnold,et al.  Interactions of like-charged rods at low temperatures: Analytical theory vs. simulations , 2008, The European physical journal. E, Soft matter.

[48]  R. J. Speedy Pressure and entropy of hard-sphere crystals , 1998 .

[49]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[50]  Sharon C Glotzer,et al.  Entropically patchy particles: engineering valence through shape entropy. , 2013, ACS nano.

[51]  S. Luding,et al.  Prediction of polydisperse hard-sphere mixture behavior using tridisperse systems. , 2013, Soft matter.

[52]  See-Eng Phan,et al.  Nature of the divergence in low shear viscosity of colloidal hard-sphere dispersions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  C. Avendaño,et al.  Phase behavior of rounded hard-squares , 2012 .

[54]  L. Reatto,et al.  Microphase separation in two-dimensional systems with competing interactions. , 2006, The Journal of chemical physics.

[55]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. , 2005 .

[56]  L. Berthier,et al.  Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. , 2008, Physical review letters.

[57]  P. Pusey The effect of polydispersity on the crystallization of hard spherical colloids , 1987 .

[58]  C. E. Fiore,et al.  First-order phase transitions: a study through the parallel tempering method. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Stephen R. Williams,et al.  Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition , 1998 .

[60]  G. Odriozola,et al.  Hard ellipsoids: analytically approaching the exact overlap distance. , 2011, The Journal of chemical physics.

[61]  Daan Frenkel,et al.  The hard ellipsoid-of-revolution fluid I. Monte Carlo simulations , 1985 .

[62]  J. Kosterlitz Commentary on ‘Ordering, metastability and phase transitions in two-dimensional systems’ J M Kosterlitz and D J Thouless (1973 J. Phys. C: Solid State Phys. 6 1181–203)—the early basis of the successful Kosterlitz–Thouless theory , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[63]  G. Odriozola,et al.  Further details on the phase diagram of hard ellipsoids of revolution. , 2013, The Journal of chemical physics.

[64]  Younan Xia,et al.  Template-assisted self-assembly: a versatile approach to complex micro- and nanostructures , 2009 .

[65]  Feng Wang,et al.  Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids. , 2011, Physical review letters.

[66]  M. Dijkstra,et al.  Thermodynamic signature of the dynamic glass transition in hard spheres , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[67]  R. J. Speedy,et al.  On the reproducibility of glasses , 1994 .

[68]  Carlos Vega,et al.  Determination of the melting point of hard spheres from direct coexistence simulation methods. , 2008, The Journal of chemical physics.

[69]  Andreas Jaster Computer simulations of the two-dimensional melting transition using hard disks , 1999 .

[70]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details , 2005 .

[71]  Bruce J. Berne,et al.  Gaussian Model Potentials for Molecular Interactions , 1972 .

[72]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[73]  Yuko Okamoto,et al.  Replica-exchange Monte Carlo method for the isobaric isothermal ensemble , 2001 .

[74]  L. Manna,et al.  Ordered two-dimensional superstructures of colloidal octapod-shaped nanocrystals on flat substrates. , 2012, Nano letters.

[75]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[76]  D. Frenkel,et al.  Phase diagram of a system of hard ellipsoids , 1984 .

[77]  G. Odriozola,et al.  Phase diagram of two-dimensional hard ellipses. , 2014, The Journal of chemical physics.

[78]  Giorgio Parisi,et al.  Mean-field theory of hard sphere glasses and jamming , 2008, 0802.2180.

[79]  Frenkel,et al.  Evidence for algebraic orientational order in a two-dimensional hard-core nematic. , 1985, Physical review. A, General physics.

[80]  Ludger Santen,et al.  Absence of thermodynamic phase transition in a model glass former , 2000, Nature.

[81]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[82]  Johannes Schmitt,et al.  Internal structure of layer-by-layer adsorbed polyelectrolyte films : a neutron and X-ray reflectivity study , 1993 .

[83]  W. W. Wood,et al.  Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres , 1957 .

[84]  T. Schilling,et al.  Solid-solid phase transition in hard ellipsoids. , 2009, The Journal of chemical physics.

[85]  J. W. Perram,et al.  Monte Carlo simulation of hard spheroids , 1984 .

[86]  David R. Nelson,et al.  Theory of Two-Dimensional Melting , 1978 .

[87]  G. Rickayzen A model for the study of the structure of hard molecular fluids , 1998 .

[88]  Werner Krauth,et al.  Two-step melting in two dimensions: first-order liquid-hexatic transition. , 2011, Physical review letters.

[89]  L. Angelani,et al.  Configurational entropy of hard spheres , 2005, cond-mat/0506447.

[90]  Leonid Paramonov,et al.  The directional contact distance of two ellipsoids: coarse-grained potentials for anisotropic interactions. , 2005, The Journal of chemical physics.

[91]  R. J. Speedy Pressure of the metastable hard-sphere fluid , 1997 .

[92]  F. H. Stillinger,et al.  Tetratic order in the phase behavior of a hard-rectangle system , 2006 .