Benchmarks for dynamic multi-objective optimisation algorithms

Algorithms that solve Dynamic Multi-Objective Optimisation Problems (DMOOPs) should be tested on benchmark functions to determine whether the algorithm can overcome specific difficulties that can occur in real-world problems. However, for Dynamic Multi-Objective Optimisation (DMOO), no standard benchmark functions are used. A number of DMOOPs have been proposed in recent years. However, no comprehensive overview of DMOOPs exist in the literature. Therefore, choosing which benchmark functions to use is not a trivial task. This article seeks to address this gap in the DMOO literature by providing a comprehensive overview of proposed DMOOPs, and proposing characteristics that an ideal DMOO benchmark function suite should exhibit. In addition, DMOOPs are proposed for each characteristic. Shortcomings of current DMOOPs that do not address certain characteristics of an ideal benchmark suite are highlighted. These identified shortcomings are addressed by proposing new DMOO benchmark functions with complicated Pareto-Optimal Sets (POSs), and approaches to develop DMOOPs with either an isolated or deceptive Pareto-Optimal Front (POF). In addition, DMOO application areas and real-world DMOOPs are discussed.

[1]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .

[2]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[3]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[4]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[6]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[7]  M. Schreckenberg,et al.  A dynamic route guidance system based on real traffic data , 2001, Eur. J. Oper. Res..

[8]  HA RAIMOP. A Dynamic Interval Goal Programming Approach to the Regulation of a Lake – River System , 2001 .

[9]  Raimo P. Hämäläinen,et al.  A Dynamic Interval Goal Programming Approach to the Regulation of a Lake-River System , 2001 .

[10]  S. Zein-Sabatto,et al.  Dynamic multiobjective optimization of war resource allocation using adaptive genetic algorithms , 2001, Proceedings. IEEE SoutheastCon 2001 (Cat. No.01CH37208).

[11]  Raimo P. Hämäläinen,et al.  Dynamic multi-objective heating optimization , 2002, Eur. J. Oper. Res..

[12]  Bogdan Filipič,et al.  A Numerical Simulator for a Crop-Producing Greenhouse , 2002 .

[13]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[14]  Loo Hay Lee,et al.  A hybrid multiobjective evolutionary algorithm for solving truck and trailer vehicle routing problems , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[15]  Steven Guan,et al.  Evolving Dynamic Multi-Objective Optimization Problems with Objective Replacement , 2005, Artificial Intelligence Review.

[16]  Kalyanmoy Deb,et al.  SINGLE AND MULTI-OBJECTIVE OPTIMIZATION USING EVOLUTIONARY COMPUTATION , 2004 .

[17]  Bernhard Sendhoff,et al.  Constructing Dynamic Optimization Test Problems Using the Multi-objective Optimization Concept , 2004, EvoWorkshops.

[18]  Cheng-Liang Chen,et al.  Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices , 2004, Comput. Chem. Eng..

[19]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[20]  Maoguo Gong,et al.  Clonal Selection Algorithm for Dynamic Multiobjective Optimization , 2005, CIS.

[21]  Paolo Amato,et al.  An ALife-Inspired Evolutionary Algorithm for Dynamic Multiobjective Optimization Problems , 2005 .

[22]  Kalyanmoy Deb,et al.  Dynamic Multi-objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling , 2007, EMO.

[23]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[24]  Yuping Wang,et al.  New Evolutionary Algorithm for Dynamic Multiobjective Optimization Problems , 2006, ICNC.

[25]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[26]  Günter Rudolph,et al.  Evolutionary Optimization of Dynamic Multiobjective Functions , 2006 .

[27]  David Wallace,et al.  Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach , 2006, GECCO.

[28]  Qingfu Zhang,et al.  A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages , 2006, PPSN.

[29]  Qingfu Zhang,et al.  Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization , 2007, EMO.

[30]  Kalyanmoy Deb,et al.  Multi-objective test problems, linkages, and evolutionary methodologies , 2006, GECCO.

[31]  Hugo de Garis,et al.  A Dynamic Multi-Objective Evolutionary Algorithm Based on an Orthogonal Design , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[32]  Min Tang,et al.  The Construction of Dynamic Multi-objective Optimization Test Functions , 2007, ISICA.

[33]  Julio Ortega Lopera,et al.  Parallel Processing for Multi-objective Optimization in Dynamic Environments , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[34]  Xiaodong Li,et al.  On performance metrics and particle swarm methods for dynamic multiobjective optimization problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[35]  Francisco de Toro,et al.  The Parallel Single Front Genetic Algorithm (PSFGA) in Dynamic Multi-objective Optimization , 2007, IWANN.

[36]  Yuping Wang,et al.  Dynamic Multi-objective Optimization Evolutionary Algorithm , 2007, Third International Conference on Natural Computation (ICNC 2007).

[37]  Bojin Zheng,et al.  A New Dynamic Multi-objective Optimization Evolutionary Algorithm , 2007, Third International Conference on Natural Computation (ICNC 2007).

[38]  Zafer Bingul,et al.  Adaptive genetic algorithms applied to dynamic multiobjective problems , 2007, Appl. Soft Comput..

[39]  Andries Petrus Engelbrecht,et al.  Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[40]  Irem Ozkarahan,et al.  COLLABORATIVE PRODUCTION-DISTRIBUTION PLANNING IN SUPPLY CHAIN: A FUZZY GOAL PROGRAMMING APPROACH , 2008 .

[41]  Kay Chen Tan,et al.  Handling Uncertainties in Evolutionary Multi-Objective Optimization , 2008, WCCI.

[42]  Rajkumar Buyya,et al.  A pareto following variation operator for fast-converging multiobjective evolutionary algorithms , 2008, GECCO '08.

[43]  Roger,et al.  Wind Turbines , 2018 .

[44]  Rajkumar Roy,et al.  Dynamic multi-objective optimisation for machining gradient materials , 2008 .

[45]  Yuping Wang,et al.  An evolutionary algorithm for dynamic multi-objective optimization , 2008, Appl. Math. Comput..

[46]  A. K. M. Khaled Ahsan Talukder,et al.  Towards high speed multiobjective evolutionary optimizers , 2008, GECCO '08.

[47]  Zhuhong Zhang,et al.  Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control , 2008, Appl. Soft Comput..

[48]  Tapabrata Ray,et al.  Development of a memetic algorithm for Dynamic Multi-Objective Optimization and its applications for online neural network modeling of UAVs , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[49]  Kay Chen Tan,et al.  A Coevolutionary Paradigm for Dynamic Multi-Objective Optimization , 2009 .

[50]  Peter A. N. Bosman,et al.  Evolutionary Multiobjective Optimization for Dynamic Hospital Resource Management , 2009, EMO.

[51]  Xi Chen,et al.  Using Diversity as an Additional-objective in Dynamic Multi-objective Optimization Algorithms , 2009, 2009 Second International Symposium on Electronic Commerce and Security.

[52]  Zikrija Avdagic,et al.  Evolutionary Approach to Solving Non-stationary Dynamic Multi-Objective Problems , 2009, Foundations of Computational Intelligence.

[53]  Julio Ortega Lopera,et al.  A single front genetic algorithm for parallel multi-objective optimization in dynamic environments , 2009, Neurocomputing.

[54]  Tapabrata Ray,et al.  A Memetic Algorithm for Dynamic Multiobjective Optimization , 2009 .

[55]  Bin Li,et al.  Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment , 2009, 2009 IEEE Congress on Evolutionary Computation.

[56]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[57]  Tapabrata Ray,et al.  Memetic algorithm for dynamic bi-objective optimization problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[58]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[59]  Maximino Salazar Lechuga,et al.  Multi-objective optimisation using sharing in swarm optimisation algorithms , 2009 .

[60]  Kay Chen Tan,et al.  Evolutionary Multi-objective Optimization in Uncertain Environments - Issues and Algorithms , 2009, Studies in Computational Intelligence.

[61]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[62]  Andries Petrus Engelbrecht,et al.  Dynamic Multi-objective Optimisation Using PSO , 2010, Multi-Objective Swarm Intelligent System.

[63]  Chun-an Liu New Dynamic Multiobjective Evolutionary Algorithm with Core Estimation of Distribution , 2010, 2010 International Conference on Electrical and Control Engineering.

[64]  Kay Chen Tan,et al.  An investigation on noise-induced features in robust evolutionary multi-objective optimization , 2010, Expert Syst. Appl..

[65]  Kay Chen Tan,et al.  A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment , 2010, Memetic Comput..

[66]  Julio Ortega Lopera,et al.  Approaching Dynamic Multi-Objective Optimization Problems by Using Parallel Evolutionary Algorithms , 2010, Advances in Multi-Objective Nature Inspired Computing.

[67]  Mario Cámara Sola,et al.  Parallel processing for dynamic multi-objetive optimization , 2010 .

[68]  Fang Liu,et al.  A sphere-dominance based preference immune-inspired algorithm for dynamic multi-objective optimization , 2010, GECCO '10.

[69]  Bin Li,et al.  Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization , 2010, Memetic Comput..

[70]  Andries Petrus Engelbrecht,et al.  Archive management for dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[71]  K. Maalawi Special Issues on Design Optimization of Wind Turbine Structures , 2011 .

[72]  Il Hong Suh,et al.  Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants , 2011, Inf. Sci..

[73]  Demetrakis Constantinou Ant colony optimisation algorithms for solving multi-objective power-aware metrics for mobile ad hoc networks , 2011 .

[74]  Marde Helbig,et al.  Solving dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation , 2012 .

[75]  Kay Chen Tan,et al.  A data mining approach to evolutionary optimisation of noisy multi-objective problems , 2012, Int. J. Syst. Sci..

[76]  Enrique Alba,et al.  Metaheuristics for Dynamic Optimization , 2012, Metaheuristics for Dynamic Optimization.

[77]  Andries Petrus Engelbrecht,et al.  Benchmarks for dynamic multi-objective optimisation , 2013, 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE).

[78]  Andries Petrus Engelbrecht,et al.  Performance measures for dynamic multi-objective optimisation algorithms , 2013, Inf. Sci..

[79]  Andries Petrus Engelbrecht,et al.  Dynamic Multi-Objective Optimization Using PSO , 2013, Metaheuristics for Dynamic Optimization.