Principle and Physics of the LiDAR Measurement

In this chapter, a brief overview of the LiDAR measurement used for Earth and space observation is first presented. This is subsequently followed by an overview of the LiDAR instrument, describing its various optical constituent elements. The LiDAR equation is then described with emphasis on its key parameters. Finally, the main causes of LiDAR error on surface observations are specified, with a particular emphasis on airborne or spaceborne measurements.

[1]  Andreas Axelsson Rapid topographic and bathymetric reconnaissance using airborne LiDAR , 2010, Security + Defence.

[2]  M M Krekova,et al.  Laser Sensing of a Subsurface Oceanic Layer. II. Polarization Characteristics of Signals. , 1998, Applied optics.

[3]  Tristan Cossio,et al.  Shallow Bathymetric Mapping via Multistop Single Photoelectron Sensitivity Laser Ranging , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[4]  P. Ciddor Refractive index of air: new equations for the visible and near infrared. , 1996, Applied optics.

[5]  Patrick Chazette,et al.  End-to-End Simulation for a Forest-Dedicated Full-Waveform Lidar Onboard a Satellite Initialized from Airborne Ultraviolet Lidar Experiments , 2015, Remote. Sens..

[6]  Iacopo Mochi,et al.  Fluorescence lidar imaging of the cathedral and baptistery of Parma , 2003 .

[7]  Suya You,et al.  Urban Site Modeling from LiDAR , 2003, ICCSA.

[8]  James H. Churnside,et al.  Thin scattering layers observed by airborne lidar , 2009 .

[9]  Salvatore Esposito,et al.  Performance evaluation of lightweight LiDAR for UAV applications , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[10]  A. Adriani,et al.  Comparison of various linear depolarization parameters measured by lidar. , 1999, Applied optics.

[11]  R. Swift,et al.  Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency. , 1983, Applied Optics.

[12]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[13]  P. Chazette,et al.  The mobile Water vapor Aerosol Raman LIdar and its implication in the framework of the HyMeX and ChArMEx programs: application to a dust transport process , 2013 .

[14]  Patrick Chazette,et al.  Aerosol content survey by mini N2-Raman lidar: Application to local and long-range transport aerosols , 2011 .

[15]  J. Pelon,et al.  Lidar measurements of ozone vertical profiles. , 1985, Applied optics.

[16]  Jacques Pelon,et al.  Desert dust aerosol columnar properties over ocean and continental Africa from Lidar in-Space Technology Experiment (LITE) and Meteosat synergy , 2006 .

[17]  Patrick Chazette,et al.  The monsoon aerosol extinction properties at Goa during INDOEX as measured with lidar , 2003 .

[18]  Patrick Chazette,et al.  French airborne lidar measurements for Eyjafjallajökull ash plume survey , 2012 .

[19]  Gary C. Guenther,et al.  Laser Applications For Near-Shore Nautical Charting , 1978, Optics & Photonics.

[20]  William E. Carter,et al.  Adjustment of systematic errors in ALS data through surface matching , 2011 .

[21]  Xiaoli Sun,et al.  Photon detectors with large dynamic range and at near-infrared wavelength for direct detection space lidars , 2009, Defense + Commercial Sensing.

[22]  Philip S Thompson,et al.  Airborne lidar sensing of massive stony coral colonies on patch reefs in the northern Florida reef tract , 2006 .

[23]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[24]  G. Fiocco,et al.  Optical Echoes from the Moon , 1962, Nature.

[25]  D. A. Leonard,et al.  Remote sensing of subsurface water temperature by Raman scattering. , 1979, Applied optics.

[26]  J H Churnside,et al.  Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight. , 1998, Applied optics.

[27]  Ross Nelson,et al.  Estimating forest biomass and volume using airborne laser data , 1988 .

[28]  C. K. Shum,et al.  ICESat Laser Altimetry in the Great Lakes , 2004 .

[29]  D. Feurer,et al.  Airborne LiDAR Methods Applied to Riverine Environments , 2012 .

[30]  J. Pelon,et al.  Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric post‐volcanic aerosols, following the eruptions of El Chichon and Mount Pinatubo , 1995 .

[31]  Pierre H. Flamant,et al.  Atmospheric and meteorological Lidar: from pioneers to space applications , 2005 .

[32]  D Bruneau,et al.  Airborne Lidar LEANDRE II for Water-Vapor Profiling in the Troposphere. I. System description. , 2001, Applied optics.

[33]  P. Chazette,et al.  Interest of a Full-Waveform Flown UV Lidar to Derive Forest Vertical Structures and Aboveground Carbon , 2014 .

[34]  Sune Svanberg,et al.  Fluorescence Lidar Monitoring of Vegetation Status , 1995 .

[35]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: existing systems and firms and other resources , 1999 .

[36]  Derek D. Lichti,et al.  Rigorous approach to bore-sight self-calibration in airborne laser scanning , 2006 .

[37]  E. Fry,et al.  Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean. , 1997, Applied optics.

[38]  S. Ashford,et al.  Application of Airborne LIDAR for Seacliff Volumetric Change and Beach-Sediment Budget Contributions , 2006 .

[39]  V. Kadatskiy Riegl Usa,et al.  ACCURACY AND ERROR ASSESSMENT OF TERRESTRIAL, MOBILE AND AIRBORNE LIDAR , 2011 .

[40]  Ayman F. Habib,et al.  Alternative Methodologies for LiDAR System Calibration , 2010, Remote. Sens..