The structure of the hydrogen ion (H(aq)+) in water.

The hydrogen ion in water, H(aq)(+), is a unique H(13)O(6)(+) entity that defines the boundary of positive-charge delocalization. Its central unit is neither a C(3v) H(3)O(+) Eigen-type ion nor a typical H(5)O(2)(+) Zundel-type ion. IR spectroscopy indicates that the H(13)O(6)(+) ion has an unexpectedly long central O...O separation (>>2.43 A), showing that in comparison with the gas and solid phases, the environment of liquid water is uniquely proficient in delocalizing positive charge. These results will change the description of H(aq)(+) in textbooks of chemistry, and a more extensive delocalization of positive charge may need to be incorporated into descriptions of mechanisms of aqueous proton transport.

[1]  D. C. Edwards,et al.  The local structure of protonated water from x-ray absorption and density functional theory. , 2006, The Journal of chemical physics.

[2]  Noam Agmon Structure of Concentrated HCl Solutions , 1998 .

[3]  Daniel Borgis,et al.  Transport and spectroscopy of the hydrated proton: A molecular dynamics study , 1999 .

[4]  T. Gampe,et al.  Ionic Hydration Behavior Derived from Infrared Spectra in HDO , 2002 .

[5]  C. Reed,et al.  IR spectrum of the H(5)O(2)(+) cation in the context of proton disolvates L-H(+)-L. , 2006, The journal of physical chemistry. A.

[6]  F. Tham,et al.  The nature of the hydrated proton H(aq)+ in organic solvents. , 2008, Journal of the American Chemical Society.

[7]  Gregory A Voth,et al.  Special pair dance and partner selection: elementary steps in proton transport in liquid water. , 2008, The journal of physical chemistry. B.

[8]  P. Schuster,et al.  The Hydrogen bond : recent developments in theory and experiments , 1976 .

[9]  Jeongho Kim,et al.  The vibrational spectrum of the hydrated proton: Comparison of experiment, simulation, and normal mode analysis , 2002 .

[10]  M. Parrinello,et al.  The nature of the hydrated excess proton in water , 1999, Nature.

[11]  Janusz Stangret,et al.  ATR FT-IR H2O spectra of acidic aqueous solutions. Insights about proton hydration , 2008 .

[12]  M. Parrinello,et al.  HCl hydrates as model systems for protonated water. , 2008, The journal of physical chemistry. A.

[13]  I. Olovsson,et al.  Hydrogen bond studies. XV. The crystal structure of hydrogen chloride dihydrate , 1967 .

[14]  Gregory A Voth,et al.  Computer simulation of proton solvation and transport in aqueous and biomolecular systems. , 2006, Accounts of chemical research.

[15]  S. Woutersen,et al.  Ultrafast vibrational and structural dynamics of the proton in liquid water. , 2006, Physical review letters.

[16]  S. Cukierman,et al.  Et tu, Grotthuss! and other unfinished stories. , 2006, Biochimica et biophysica acta.

[17]  R. J. Bell,et al.  The Cation H13O6+: A Short, Symmetric Hydrogen Bond , 1975, Science.

[18]  C. Reed,et al.  A Crystalline [H9O4]+ Hydronium Ion Salt with a Weakly Coordinating Anion , 1995 .

[19]  C. Reed Carborane acids. New "strong yet gentle" acids for organic and inorganic chemistry. , 2005, Chemical communications.

[20]  F. Tham,et al.  H(aq)+ structures in proton wires inside nanotubes. , 2009, Journal of the American Chemical Society.

[21]  Deborah J. Jones,et al.  Incoherent inelastic neutron scattering studies of proton conducting materials trivalent metal acid sulphate hydrates: Part I. The vibrational spectrum of H5O2+ , 1989 .

[22]  E. Stoyanov Composition, structure and IR spectra peculiarities of proton hydratosolvates H+(H2O)NLpformed in tributylphosphate solutions of strong acid HFeCl4 , 1997 .

[23]  E. Stoyanov New type of nanoparticles, nanomicelles formed in water-saturated organic solutions of HFeCl4 and HClO4: Composition, structure and properties , 1998 .

[24]  Dominik Marx,et al.  Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Maciej Śmiechowski,et al.  Proton hydration in aqueous solution: Fourier transform infrared studies of HDO spectra. , 2006, The Journal of chemical physics.

[26]  A. Soper,et al.  Eigen versus Zundel complexes in HCl-water mixtures. , 2006, The Journal of chemical physics.

[27]  A. Schmidt,et al.  Hydroxonium‐hexachloroantimonate(V) , 1976 .

[28]  Evgeniy M. Myshakin,et al.  Spectral Signatures of Hydrated Proton Vibrations in Water Clusters , 2005, Science.

[29]  I. Smirnov,et al.  Proton solvates, H+·nH2O·mL, formed by diphosphine dioxides with chlorinated cobalt(III) dicarbollide acid , 2005 .

[30]  Jessica M J Swanson,et al.  Role of charge transfer in the structure and dynamics of the hydrated proton. , 2009, The journal of physical chemistry. B.

[31]  Manfred Eigen,et al.  Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Part I: ELEMENTARY PROCESSES†‡ , 1964 .

[32]  S. Turrell,et al.  H3O+ ions in aqueous acid solutions. The infrared spectra revisited , 1976 .

[33]  Gregory A. Voth,et al.  The computer simulation of proton transport in water , 1999 .

[34]  J. Roscioli,et al.  Quantum Structure of the Intermolecular Proton Bond , 2007, Science.

[35]  E. Meijer,et al.  A density functional theory based study of the microscopic structure and dynamics of aqueous HCl solutions. , 2006, Physical chemistry chemical physics : PCCP.