Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically-modified sterile malaria mosquitoes

[1]  E. Waltz First genetically modified mosquitoes released in the United States , 2021, Nature.

[2]  L. Koekemoer,et al.  Estimates of the population size and dispersal range of Anopheles arabiensis in Northern KwaZulu-Natal, South Africa: implications for a planned pilot programme to release sterile male mosquitoes , 2021, Parasites & vectors.

[3]  M. Benedict,et al.  Anopheles gambiae (s.l.) is found where few are looking: assessing mosquito diversity and density outside inhabited areas using diverse sampling methods , 2020, Parasites & vectors.

[4]  P. Papathanos,et al.  Detecting the population dynamics of an autosomal sex ratio distorter transgene in malaria vector mosquitoes , 2020, The Journal of applied ecology.

[5]  F. Tripet,et al.  The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities , 2020, Parasites & Vectors.

[6]  R. Mahapatra,et al.  Plasmodium falciparum: Multidrug resistance , 2019, Chemical biology & drug design.

[7]  M. Benedict,et al.  Seasonal malaria vector and transmission dynamics in western Burkina Faso , 2019, Malaria Journal.

[8]  M. Benedict,et al.  Large-cage assessment of a transgenic sex-ratio distortion strain on populations of an African malaria vector , 2019, Parasites & Vectors.

[9]  Fredros O. Okumu,et al.  Pathway to Deployment of Gene Drive Mosquitoes as a Potential Biocontrol Tool for Elimination of Malaria in Sub-Saharan Africa: Recommendations of a Scientific Working Group , 2018, The American journal of tropical medicine and hygiene.

[10]  A. Burt,et al.  Gene drive to reduce malaria transmission in sub-Saharan Africa , 2018 .

[11]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[12]  Roberto Galizi,et al.  Gene drives to fight malaria: current state and future directions , 2017, Pathogens and global health.

[13]  Zawadi D. Mageni,et al.  Multiple insecticide resistance in Anopheles gambiae from Tanzania: a major concern for malaria vector control , 2017, Malaria Journal.

[14]  M. Benedict,et al.  The use of sequential mark-release-recapture experiments to estimate population size, survival and dispersal of male mosquitoes of the Anopheles gambiae complex in Bana, a west African humid savannah village , 2017, Parasites & Vectors.

[15]  Arjen Dondorp,et al.  Antimalarial Drug Resistance: A Threat to Malaria Elimination. , 2017, Cold Spring Harbor perspectives in medicine.

[16]  R. Shretta,et al.  The economics of malaria control and elimination: a systematic review , 2016, Malaria Journal.

[17]  M. Benedict,et al.  Comparison of Model Predictions and Laboratory Observations of Transgene Frequencies in Continuously-Breeding Mosquito Populations , 2016, Insects.

[18]  J. Hemingway,et al.  Averting a malaria disaster: will insecticide resistance derail malaria control? , 2016, The Lancet.

[19]  E. Kweka,et al.  Insecticide Resistance in East Africa — History, Distribution and Drawbacks on Malaria Vectors and Disease Control , 2016 .

[20]  Ethan Bier,et al.  Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi , 2015, Proceedings of the National Academy of Sciences.

[21]  U. Dalrymple,et al.  The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015 , 2015, Nature.

[22]  K. Barnes,et al.  Rise of multiple insecticide resistance in Anopheles funestus in Malawi: a major concern for malaria vector control , 2015, Malaria Journal.

[23]  Christl A. Donnelly,et al.  Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes , 2015, PLoS neglected tropical diseases.

[24]  F. Tripet,et al.  Targeting male mosquito mating behaviour for malaria control , 2015, Parasites & Vectors.

[25]  A. Diabaté,et al.  Participation of irradiated Anopheles arabiensis males in swarms following field release in Sudan , 2014, Malaria Journal.

[26]  F. Tripet,et al.  Mating competitiveness of sterile male Anopheles coluzzii in large cages , 2014, Malaria Journal.

[27]  David L. Smith,et al.  A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens , 2014, Parasites & Vectors.

[28]  B. Stoddard,et al.  A synthetic sex ratio distortion system for the control of the human malaria mosquito , 2014, Nature Communications.

[29]  F. Simard,et al.  Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). , 2014, Acta tropica.

[30]  L. Alphey Genetic control of mosquitoes. , 2014, Annual review of entomology.

[31]  Joseph Keating,et al.  Strategic roles for behaviour change communication in a changing malaria landscape , 2014, Malaria Journal.

[32]  F. Tripet,et al.  Genetic and Environmental Factors Associated with Laboratory Rearing Affect Survival and Assortative Mating but Not Overall Mating Success in Anopheles gambiae Sensu Stricto , 2013, PloS one.

[33]  G. Gibson,et al.  Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa , 2013, Parasites & Vectors.

[34]  J. Meredith,et al.  Contrasted Fitness Costs of Docking and Antibacterial Constructs in the EE and EVida3 Strains Validates Two-Phase Anopheles gambiae Genetic Transformation System , 2013, PloS one.

[35]  M. Benedict,et al.  An Inexpensive and Effective Larval Diet for Anopheles arabiensis (Diptera: Culicidae): Eat Like a Horse, a Bird, or a Fish? , 2012, Journal of medical entomology.

[36]  Camilla Beech,et al.  Open Field Release of Genetically Engineered Sterile Male Aedes aegypti in Malaysia , 2012, PloS one.

[37]  H. Ranson,et al.  Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise? , 2012, Malaria Journal.

[38]  A. Burt,et al.  Infertility resulting from transgenic I-PpoI male Anopheles gambiae in large cage trials , 2012, Pathogens and global health.

[39]  Adama Dao,et al.  Spatial distribution and male mating success of Anopheles gambiae swarms , 2011, BMC Evolutionary Biology.

[40]  T. K. Barik,et al.  Malaria vector control: from past to future , 2011, Parasitology Research.

[41]  Wendy Prudhomme O'Meara,et al.  Changes in the burden of malaria in sub-Saharan Africa. , 2010, The Lancet. Infectious diseases.

[42]  J. Ribeiro,et al.  Population Size and Migration of Anopheles gambiae in the Bancoumana Region of Mali and Their Significance for Efficient Vector Control , 2010, PloS one.

[43]  C. Mulligan,et al.  Current State and Future Directions , 2009 .

[44]  G. Kokwaro,et al.  Ongoing challenges in the management of malaria , 2009, Malaria Journal.

[45]  N. Manoukis,et al.  Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae , 2009, Proceedings of the Royal Society B: Biological Sciences.

[46]  A. Diabaté,et al.  Decreased motivation in the use of insecticide-treated nets in a malaria endemic area in Burkina Faso , 2009, Malaria Journal.

[47]  G. Wegner,et al.  From the past to the future. , 2009, Macromolecular rapid communications.

[48]  Andrea Crisanti,et al.  Targeting the X Chromosome during Spermatogenesis Induces Y Chromosome Transmission Ratio Distortion and Early Dominant Embryo Lethality in Anopheles gambiae , 2008, PLoS genetics.

[49]  A. James,et al.  Guidance for contained field trials of vector mosquitoes engineered to contain a gene drive system: recommendations of a scientific working group. , 2008, Vector borne and zoonotic diseases.

[50]  S. Sinkins,et al.  Gene drive systems for insect disease vectors , 2006, Nature Reviews Genetics.

[51]  L. Alphey,et al.  Mosquito transgenesis: what is the fitness cost? , 2006, Trends in parasitology.

[52]  David L Smith,et al.  A high-throughput method for quantifying alleles and haplotypes of the malaria vaccine candidate Plasmodium falciparum merozoite surface protein-1 19 kDa , 2006, Malaria Journal.

[53]  F. Catteruccia,et al.  Impact of Genetic Manipulation on the Fitness of Anopheles stephensi Mosquitoes , 2003, Science.

[54]  J. Huriot,et al.  Distances, espaces et représentations , 1990 .

[55]  THE WORLD HEALTH ORGANIZATION , 1954 .

[56]  A. Burt Heritable strategies for controlling insect vectors of disease , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[57]  G. Mickisch Multidrug Resistance , 1996, Der Urologe A.

[58]  S. P. Akpabio World Health Organisation , 1983, British Dental Journal.