Evaluation of Cubic, SAFT, and PC-SAFT Equations of State for the Vapor–Liquid Equilibrium Modeling of CO2 Mixtures with Other Gases

Accurate thermodynamic models for phase equilibria calculations of carbon dioxide mixtures with other gases are of high importance for the safe and economic design of carbon capture and storage (CCS) technologies. In this work, we assess the capability of Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), Peng–Robinson (PR) cubic equations of state (EoS), as well as Statistical Associating Fluid Theory (SAFT) and Perturbed-Chain SAFT (PC-SAFT) in modeling vapor–liquid equilibria for binary mixtures of CO2 with CH4, N2, O2, SO2, Ar, and H2S, and for the ternary mixture CO2–N2–O2. Liquid density calculations for some of these mixtures are also performed. Experimental data available are used to assess the accuracy of the models. Two different expressions are used for the calculation of parameter α in PR EoS. PC-SAFT is, on average, more accurate than cubic EoS and SAFT when no binary interaction parameter is used. However, when a binary interaction parameter fitted to the experimental data is used, model correla...

[1]  Haifeng Dong,et al.  Carbon capture with ionic liquids: overview and progress , 2012 .

[2]  H. Herzog,et al.  Scaling up carbon dioxide capture and storage: From megatons to gigatons , 2011 .

[3]  Ioannis G. Economou,et al.  Evaluation of Statistical Associating Fluid Theory (SAFT) and Perturbed Chain-SAFT Equations of State for the Calculation of Thermodynamic Derivative Properties of Fluids Related to Carbon Capture and Sequestration , 2011 .

[4]  Andrea Schreiber,et al.  Environmental evaluation of CCS using Life Cycle Assessment–A synthesis report , 2011 .

[5]  J. Andreu,et al.  Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives , 2010 .

[6]  Andrea Ramírez,et al.  Quantitative risk assessment of CO2 transport by pipelines--a review of uncertainties and their impacts. , 2010, Journal of hazardous materials.

[7]  Jinyue Yan,et al.  Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes , 2009 .

[8]  Hailong Li,et al.  Evaluating cubic equations of state for calculation of vapor–liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes , 2009 .

[9]  Jr. Franklin M. Orr,et al.  CO2 capture and storage: are we ready? , 2009 .

[10]  Philippe Ungerer,et al.  Thermodynamic behavior of the CO2+SO2 mixture: Experimental and Monte Carlo simulation studies , 2009 .

[11]  J. Andreu,et al.  Modeling the solubility behavior of CO(2), H(2), and Xe in [C(n)-mim][Tf(2)N] ionic liquids. , 2008, The journal of physical chemistry. B.

[12]  Joris Koornneef,et al.  Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2 , 2008 .

[13]  C. Peters,et al.  Thermodynamic modeling of the phase behavior of binary systems of ionic liquids and carbon dioxide with the group contribution equation of state. , 2007, The journal of physical chemistry. B.

[14]  E. Karakatsani,et al.  tPC-PSAFT modeling of gas solubility in imidazolium-based ionic liquids , 2007 .

[15]  John Davison,et al.  Performance and costs of power plants with capture and storage of CO2 , 2007 .

[16]  Pushpam Kumar Agriculture (Chapter8) in IPCC, 2007: Climate change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[17]  Hsien Hui Khoo,et al.  Life cycle investigation of CO2 recovery and sequestration. , 2006, Environmental science & technology.

[18]  E. Karakatsani,et al.  Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the tPC-PSAFT equation of state. , 2006, The journal of physical chemistry. B.

[19]  Zaoxiao Zhang,et al.  Optimization of pipeline transport for CO2 sequestration , 2006 .

[20]  Rickard Svensson,et al.  Transportation systems for CO2––application to carbon capture and storage , 2004 .

[21]  José O. Valderrama,et al.  The state of the cubic equations of state , 2003 .

[22]  Joachim Gross,et al.  Application of the Perturbed-Chain SAFT Equation of State to Associating Systems , 2002 .

[23]  R. L. Robinson,et al.  A modified temperature dependence for the Peng–Robinson equation of state , 2001 .

[24]  Gabriele Sadowski,et al.  Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules , 2001 .

[25]  T. B. Tan,et al.  Application of a Thermal Simulator with Fully Coupled Discretized Wellbore Simulation to SAGD , 2000 .

[26]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[27]  C. Leibovici,et al.  A generalized process for phase equilibrium calculation with cubic equations of state , 1993 .

[28]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures , 1991 .

[29]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules , 1990 .

[30]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[31]  Taher A. Al-Sahhaf,et al.  Vapor—liquid equilibria for the ternary system N2 + CO2 + CH4 at 230 and 250 K , 1990 .

[32]  A. J. Kidnay,et al.  Vapor-liquid equilibria for the binary systems of nitrogen, carbon dioxide, and n-butane at temperatures from 220 to 344 K.☆ , 1989 .

[33]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[34]  Kenneth R. Hall,et al.  Volumetric behavior of near-equimolar mixtures for CO2+CH4 and CO2+N2 , 1989 .

[35]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[36]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[37]  Masahiro Yorizane,et al.  New procedure for vapor-liquid equilibria. Nitrogen+carbon dioxide, methane+Freon 22, and methane+Freon 12 , 1985 .

[38]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[39]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[40]  Taher A. Al-Sahhaf,et al.  Liquid + vapor equilibriums in the nitrogen + carbon dioxide + methane system , 1983 .

[41]  H. Knapp,et al.  VLE data for CO2-CF2Cl2, N2-CO2, N2-CF2Cl2 and N2-CO2-CF2Cl , 1983 .

[42]  R. Kobayashi,et al.  Vapor-liquid equilibrium of the methane-carbon dioxide system at low temperatures , 1978 .

[43]  Stephen S. Chen,et al.  Applications of the Augmented van der Waals Theory of Fluids.: I. Pure Fluids , 1977 .

[44]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[45]  W. R. Anderson,et al.  Liquid-vapor equilibria at 250.00.deg.K for systems containing methane, ethane, and carbon dioxide , 1976 .

[46]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[47]  Yasuhiko Arai,et al.  THE EXPERIMENTAL DETERMINATION OF THE P-V-T-X RELATIONS FOR THE CARBON DIOXIDE-NITROGEN AND THE CARBON DIOXIDE-METHANE SYSTEMS , 1971 .

[48]  Y. Arai,et al.  THE P-V-T-X RELATION FOR THE CARBON DIOXIDE-ARGON SYSTEM , 1971 .

[49]  J. Prausnitz,et al.  Multicomponent vapor‐liquid equilibria at high pressures: Part I. Experimental study of the nitrogen—oxygen—carbon dioxide system at 0°C , 1965 .

[50]  Donald L. Katz,et al.  Phase Equilibria in the Carbon Dioxide–Methane System , 1954 .

[51]  W. Kay,et al.  Phase-Equilibrium Properties of System Carbon Dioxide-Hydrogen Sulfide , 1953 .

[52]  O. Redlich,et al.  On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions. , 1949, Chemical reviews.

[53]  B. Sage,et al.  Phase Equilibrium in Hydrocarbon Systems.Methane–Carbon Dioxide System in the Gaseous Region , 1944 .

[54]  Barnett F. Dodge,et al.  AN INVESTIGATION OF THE COEXISTING LIQUID AND VAPOR PHASES OF SOLUTIONS OF OXYGEN AND NITROGEN1 , 1927 .

[55]  Ad. Blümcke,et al.  Ueber die Bestimmung der specifischen Gewichte und Dampfspannungen einiger Gemische von schwefliger Säure und Kohlensäure , 2022 .