Compact Thermally Tunable Silicon Wavelength Switch: Modeling and Characterization

A wavelength-selective photonic switch is developed based on a Si microring resonator using thermooptic effect. The 10-mum-diameter microring resonator uses single-mode strip Si waveguides of dimension 0.25 mum times 0.45 mum operating at 1.5 mum. Full-width at half-maximum are in the range 0.1-0.2 nm. The ultrawide tunable range (>6.4 nm) and wide free spectral range (~18 nm) of the switch element enables wavelength reconflgurable multichannel matrix switch by wavelength multiplexing/demultiplexing. Average rise delay time of 14 mus with low switching power of 3.15 mW has been achieved with 0.2-nm wavelength tuning and 78 mus, 104 mW for 6.4-nm tuning. Fall delay times are usually less than 10 mus. Thermal simulations show 10%-20% agreement with the measurements up to 3.2-nm tuning. The compact size of the switch shows its potential as an active element in photonic integrated circuits.