Phase transitions in the Ramsey-Turán theory

Let f ( n ) be a function and H be a graph. Denote by RT ( n , H , f ( n ) ) the maximum number of edges of an H-free graph on n vertices with independence number less than f ( n ) . Erd?s and Sos 12] asked if RT ( n , K 5 , c n ) = o ( n 2 ) for some constant c. We answer this question by proving the stronger RT ( n , K 5 , o ( n log ? n ) ) = o ( n 2 ) . It is known that RT ( n , K 5 , c n log ? n ) = n 2 / 4 + o ( n 2 ) for c 1 , so one can say that K 5 has a Ramsey-Turan phase transition at c n log ? n . We extend this result to several other K s 's and functions f ( n ) , determining many more phase transitions. We formulate several open problems, in particular, whether variants of the Bollobas-Erd?s graph exist to give good lower bounds on RT ( n , K s , f ( n ) ) for various pairs of s and f ( n ) . Among others, we use Szemeredi's Regularity Lemma and the Hypergraph Dependent Random Choice Lemma. We also present a short proof of the fact that K s -free graphs with small independence number are sparse: on n vertices have o ( n 2 ) edges.

[1]  Christopher M. Hartman Extremal problems in graph theory , 1997 .

[2]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[3]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[4]  Béla Bollobás,et al.  On a Ramsey-Turán type problem , 1976, Journal of combinatorial theory. Series B (Print).

[5]  JANOS BOLYAI,et al.  Some remarks on Ramsey ’ s and TurWs theorem , 2002 .

[6]  D. Conlon,et al.  Ramsey numbers of sparse hypergraphs , 2009 .

[7]  Benny Sudakov,et al.  A few remarks on Ramsey-Tura'n-type problems , 2003, J. Comb. Theory, Ser. B.

[8]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[9]  Tom Bohman,et al.  Dynamic concentration of the triangle‐free process , 2013, Random Struct. Algorithms.

[10]  David Conlon,et al.  Ramsey numbers of sparse hypergraphs , 2007, Random Struct. Algorithms.

[11]  Peter Keevash,et al.  The early evolution of the H-free process , 2009, 0908.0429.

[12]  Benny Sudakov,et al.  Dependent random choice , 2009, Random Struct. Algorithms.

[13]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[14]  Noga A Lon,et al.  Tur an Numbers of Bipartite Graphs and Related Ramsey-Type Questions , 2003 .

[15]  Miklós Simonovits,et al.  Turán-Ramsey theorems and simple asymptotically extremal structures , 1993, Comb..

[16]  Miklós Simonovits,et al.  Turán-Ramsey Theorems and Kp-Independence Numbers , 1994, Combinatorics, Probability and Computing.

[17]  Yufei Zhao,et al.  The critical window for the classical Ramsey-Turán problem , 2012, Comb..

[18]  James B. Shearer,et al.  A note on the independence number of triangle-free graphs , 1983, Discret. Math..

[19]  Ingo Schiermeyer,et al.  The Ramsey number r(C7, C7, C7) , 2003, Discuss. Math. Graph Theory.

[20]  Miklós Simonovits,et al.  Ramsey-Turán theory , 2001, Discret. Math..

[21]  John Lenz,et al.  On the Ramsey-Turán numbers of graphs and hypergraphs , 2011, 1109.4428.

[22]  John Lenz,et al.  Some exact Ramsey–Turán numbers , 2011, 1109.4472.

[23]  Endre Szemerédi,et al.  More results on Ramsey—Turán type problems , 1983, Comb..