The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus.

[1]  K. Griendling,et al.  NADPH oxidases and angiotensin II receptor signaling , 2009, Molecular and Cellular Endocrinology.

[2]  H. Shaltout,et al.  Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production. , 2009, American journal of physiology. Renal physiology.

[3]  V. Natarajan,et al.  Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. , 2009, Antioxidants & redox signaling.

[4]  A. Eid,et al.  Nox4 NAD(P)H Oxidase Mediates Src-dependent Tyrosine Phosphorylation of PDK-1 in Response to Angiotensin II , 2008, Journal of Biological Chemistry.

[5]  X. Li,et al.  Intracellular ANG II directly induces in vitro transcription of TGF-beta1, MCP-1, and NHE-3 mRNAs in isolated rat renal cortical nuclei via activation of nuclear AT1a receptors. , 2008, American journal of physiology. Cell physiology.

[6]  Rajesh Kumar,et al.  The intracellular renin–angiotensin system: implications in cardiovascular remodeling , 2008, Current opinion in nephrology and hypertension.

[7]  L. Hunyady,et al.  Mechanism of Angiotensin II-induced Superoxide Production in Cells Reconstituted with Angiotensin Type 1 Receptor and the Components of NADPH Oxidase* , 2008, Journal of Biological Chemistry.

[8]  T. Hébert,et al.  G Protein-Coupled Receptors in and on the Cell Nucleus: A New Signaling Paradigm? , 2008, Journal of receptor and signal transduction research.

[9]  J. Fetrow,et al.  The Requirement of Reversible Cysteine Sulfenic Acid Formation for T Cell Activation and Function1 , 2007, The Journal of Immunology.

[10]  G. Wolf,et al.  Angiotensin II-induced reactive oxygen species and the kidney. , 2007, Journal of the American Society of Nephrology : JASN.

[11]  J. Hoidal,et al.  Nox4 mediates TGF-beta1-induced retinoblastoma protein phosphorylation, proliferation, and hypertrophy in human airway smooth muscle cells. , 2007, American journal of physiology. Lung cellular and molecular physiology.

[12]  L. Dworkin,et al.  Long-term, high-dosage candesartan suppresses inflammation and injury in chronic kidney disease: nonhemodynamic renal protection. , 2007, Journal of the American Society of Nephrology : JASN.

[13]  E. Goetzl Diverse pathways for nuclear signaling by G protein-coupled receptors and their ligands. , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  J. Hoidal,et al.  Nox 4 mediates TGF-1-induced retinoblastoma protein phosphorylation , proliferation , and hypertrophy in human airway smooth muscle cells , 2007 .

[15]  P. Déléris,et al.  Nuclear Ptdlns(3,4,5)P3 signaling: An ongoing story , 2006, Journal of cellular biochemistry.

[16]  N. Heveker,et al.  G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. , 2006, Canadian journal of physiology and pharmacology.

[17]  D. Diz,et al.  Differential expression of nuclear AT1 receptors and angiotensin II within the kidney of the male congenic mRen2. Lewis rat. , 2006, American journal of physiology. Renal physiology.

[18]  M. Dinauer,et al.  Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. , 2006, Cellular signalling.

[19]  K. Nakagawa,et al.  The superoxide‐producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[20]  K. Sharma,et al.  Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. , 2005, American journal of physiology. Renal physiology.

[21]  M. Kazanietz,et al.  PKC isozymes and diacylglycerol-regulated proteins as effectors of growth factor receptors , 2005, Growth factors.

[22]  G. Booz,et al.  Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy , 2004, Regulatory Peptides.

[23]  K. Griendling,et al.  Distinct Subcellular Localizations of Nox1 and Nox4 in Vascular Smooth Muscle Cells , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[24]  H. Motoshima,et al.  The NAD(P)H Oxidase Homolog Nox4 Modulates Insulin-Stimulated Generation of H2O2 and Plays an Integral Role in Insulin Signal Transduction , 2004, Molecular and Cellular Biology.

[25]  B. O'dowd,et al.  Agonist-independent Nuclear Localization of the Apelin, Angiotensin AT1, and Bradykinin B2 Receptors* , 2004, Journal of Biological Chemistry.

[26]  Michael I. Wilson,et al.  The role of phosphoinositides and phosphorylation in regulation of NADPH oxidase. , 2004, Advances in enzyme regulation.

[27]  H. Abboud,et al.  Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. , 2003, American journal of physiology. Renal physiology.

[28]  R. Irvine Nuclear lipid signalling , 2003, Nature Reviews Molecular Cell Biology.

[29]  RE RICHARDN. special medical editorial Implications of intracrine hormone action for physiology and medicine , 2003 .

[30]  P. Seshiah,et al.  Angiotensin II Stimulation of NAD(P)H Oxidase Activity: Upstream Mediators , 2002, Circulation research.

[31]  Robin F Irvine,et al.  Nuclear Lipid Signaling , 2000, Science's STKE.

[32]  D. Silversides,et al.  Use of a Biological Peptide Pump to Study Chronic Peptide Hormone Action in Transgenic Mice , 2001, The Journal of Biological Chemistry.

[33]  Erwin G. Van Meir,et al.  Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. , 2001, Gene.

[34]  M. Hattori,et al.  A Novel Superoxide-producing NAD(P)H Oxidase in Kidney* , 2001, The Journal of Biological Chemistry.

[35]  P. Várnai,et al.  Identification of renox, an NAD(P)H oxidase in kidney. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Wolfgang Ziegler,et al.  Multiple pathways control protein kinase C phosphorylation , 2000, The EMBO journal.

[37]  D. Lu,et al.  Angiotensin II-induced nuclear targeting of the angiotensin type 1 (AT1) receptor in brain neurons. , 1998, Endocrinology.

[38]  H. Singer,et al.  Angiotensin-II-binding sites on hepatocyte nuclei. , 1992, Endocrinology.

[39]  P. Khairallah,et al.  Angiotensin II: Rapid Localization in Nuclei of Smooth and Cardiac Muscle , 1971, Science.