Venom components of the scorpion Centruroides limpidus modulate cytokine expression by T helper lymphocytes: Identification of ion channel-related toxins by mass spectrometry.

[1]  L. Faccioli,et al.  Scorpion envenomation and inflammation: Beyond neurotoxic effects. , 2019, Toxicon : official journal of the International Society on Toxinology.

[2]  M. Delepierre,et al.  Cn29, a novel orphan peptide found in the venom of the scorpion Centruroides noxius: Structure and function. , 2019, Toxicon : official journal of the International Society on Toxinology.

[3]  E. F. Schwartz,et al.  Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects , 2019, Molecules.

[4]  L. Possani,et al.  Dissecting Toxicity: The Venom Gland Transcriptome and the Venom Proteome of the Highly Venomous Scorpion Centruroides limpidus (Karsch, 1879) , 2019, Toxins.

[5]  W. Ouyang,et al.  IL‐10 Family Cytokines IL‐10 and IL‐22: from Basic Science to Clinical Translation , 2019, Immunity.

[6]  Nicole M. Chapman,et al.  Helper T cell differentiation , 2019, Cellular & Molecular Immunology.

[7]  Kevin A. Robertson,et al.  The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells , 2019, Nature Communications.

[8]  P. Bougis,et al.  Serotherapy against Voltage-Gated Sodium Channel-Targeting α-Toxins from Androctonus Scorpion Venom , 2019, Toxins.

[9]  J. Kinet,et al.  Calcium signalling in T cells , 2019, Nature Reviews Immunology.

[10]  K. Oestreich,et al.  In Vitro Differentiation of Effector CD4+ T Helper Cell Subsets. , 2019, Methods in molecular biology.

[11]  L. Possani,et al.  Venom content and toxicity regeneration after venom gland depletion by electrostimulation in the scorpion Centruroides limpidus , 2019, Toxicon : official journal of the International Society on Toxinology.

[12]  L. L. Valdez-Vélázquez,et al.  Mass fingerprinting and electrophysiological analysis of the venom from the scorpion Centruroides hirsutipalpus (Scorpiones: Buthidae) , 2018, Journal of Venomous Animals and Toxins including Tropical Diseases.

[13]  Arijit Ghosh,et al.  Scorpion Venom–Toxins that Aid in Drug Development: A Review , 2018, International Journal of Peptide Research and Therapeutics.

[14]  B. Niemeyer,et al.  Profiling calcium signals of in vitro polarized human effector CD4+ T cells. , 2018, Biochimica et biophysica acta. Molecular cell research.

[15]  A. Licea-Navarro,et al.  Antimycobacterial Activity: A New Pharmacological Target for Conotoxins Found in the First Reported Conotoxin from Conasprella ximenes , 2018, Toxins.

[16]  Roberto J. Miranda,et al.  Venoms of Centruroides and Tityus species from Panama and their main toxic fractions , 2018, Toxicon : official journal of the International Society on Toxinology.

[17]  John J Miles,et al.  Immune drug discovery from venoms , 2018, Toxicon : official journal of the International Society on Toxinology.

[18]  G. Espino-Solis,et al.  Selected scorpion toxin exposures induce cytokine release in human peripheral blood mononuclear cells , 2017, Toxicon : official journal of the International Society on Toxinology.

[19]  W. Fung-Leung,et al.  T Cell Subset and Stimulation Strength-Dependent Modulation of T Cell Activation by Kv1.3 Blockers , 2017, PloS one.

[20]  L. Possani,et al.  Comparative proteomic analysis of female and male venoms from the Mexican scorpion Centruroides limpidus: Novel components found , 2017, Toxicon : official journal of the International Society on Toxinology.

[21]  N. Gagliani,et al.  Basic Aspects of T Helper Cell Differentiation. , 2017, Methods in molecular biology.

[22]  E. Lugli T-Cell Differentiation , 2017, Methods in Molecular Biology.

[23]  L. L. Valdez-Vélázquez,et al.  Comprehensive analysis of venom from the scorpion Centruroides tecomanus reveals compounds with antimicrobial, cytotoxic, and insecticidal activities. , 2016, Toxicon : official journal of the International Society on Toxinology.

[24]  S. Kuruppu,et al.  Effects of Animal Venoms and Toxins on Hallmarks of Cancer , 2016, Journal of Cancer.

[25]  T. Nakayama,et al.  CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. , 2016, International immunology.

[26]  Scorpion Venom as Therapeutic Agent-Current Perspective , 2016 .

[27]  L. Faccioli,et al.  Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes , 2015, Journal of Venomous Animals and Toxins including Tropical Diseases.

[28]  M. Assarehzadegan,et al.  Induction of IL-12 from human monocytes after stimulation with Androctonus crassicauda scorpion venom. , 2015, Toxicon : official journal of the International Society on Toxinology.

[29]  E. Lewis,et al.  T Helper Subsets, Peripheral Plasticity, and the Acute Phase Protein, α1-Antitrypsin , 2015, BioMed research international.

[30]  A. Orekhov,et al.  T Helper Lymphocyte Subsets and Plasticity in Autoimmunity and Cancer: An Overview , 2015, BioMed research international.

[31]  J. Egen,et al.  TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma , 2015, Science Translational Medicine.

[32]  A. Khodadadi,et al.  Hemiscorpius lepturus venom induces expression and production of interluckin-12 in human monocytes. , 2015, Toxicon : official journal of the International Society on Toxinology.

[33]  B. Peng,et al.  Toxins Targeting the KV1.3 Channel: Potential Immunomodulators for Autoimmune Diseases , 2015, Toxins.

[34]  S. Feske,et al.  Ion channels in innate and adaptive immunity. , 2015, Annual review of immunology.

[35]  Identification and functional characterization of voltage-gated sodium channels in lymphocytes. , 2015, Biochemical and biophysical research communications.

[36]  Ernesto Ortiz,et al.  Scorpion venom components as potential candidates for drug development , 2014, Toxicon.

[37]  L. L. Valdez-Vélázquez,et al.  Mass Fingerprinting of the Venom and Transcriptome of Venom Gland of Scorpion Centruroides tecomanus , 2013, PloS one.

[38]  BenNasr Hmed,et al.  Scorpion Peptides: Potential Use for New Drug Development , 2013, Journal of toxicology.

[39]  P. Muranski,et al.  Essentials of Th17 cell commitment and plasticity. , 2013, Blood.

[40]  F. Laraba-Djebari,et al.  Scorpion Venom Interactions with the Immune System , 2013 .

[41]  S. Miller,et al.  16 – Helper T-cell subsets and control of the inflammatory response , 2012 .

[42]  P. Allen,et al.  A voltage-gated sodium channel is essential for the positive selection of CD4+ T cells , 2012, Nature Immunology.

[43]  S. Feske,et al.  Ion channels , 2013, Thorax.

[44]  D. Fox,et al.  Sensitivity and Resistance to Regulation by IL-4 during Th17 Maturation , 2011, The Journal of Immunology.

[45]  A. Sher,et al.  IL-10 production by CD4+ effector T cells: a mechanism for self-regulation , 2010, Mucosal Immunology.

[46]  K. Chandy,et al.  The functional network of ion channels in T lymphocytes , 2009, Immunological reviews.

[47]  S. Miller,et al.  Helper T cell subsets and control of the inflammatory response , 2008 .

[48]  E. Riley,et al.  IL-10: The Master Regulator of Immunity to Infection , 2008, The Journal of Immunology.

[49]  V. Petricevich Balance Between Pro- and Anti-Inflammatory Cytokines in Mice Treated With Centruroides noxius Scorpion Venom , 2006, Mediators of inflammation.

[50]  Juan A. Fernández,et al.  Novel alpha-KTx peptides from the venom of the scorpion Centruroides elegans selectively blockade Kv1.3 over IKCa1 K+ channels of T cells. , 2005, Toxicon : official journal of the International Society on Toxinology.

[51]  Michael Pennington,et al.  K+ channels as targets for specific immunomodulation. , 2004, Trends in pharmacological sciences.