Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems.

Originally described as a repressor of gene expression in the stationary phase of growth, CsrA (RsmA) regulates primary and secondary metabolic pathways, biofilm formation, motility, virulence circuitry of pathogens, quorum sensing and stress response systems by binding to conserved sequences in its target mRNAs and altering their translation and/or turnover. While the binding of CsrA to RNA is understood at an atomic level, new mechanisms of gene activation and repression by this protein are still emerging. In the γ-proteobacteria, small non-coding RNAs (sRNAs) use molecular mimicry to sequester multiple CsrA dimers away from mRNA. In contrast, the FliW protein of Bacillus subtilis inhibits CsrA activity by binding to this protein, thereby establishing a checkpoint in flagellum morphogenesis. Turnover of CsrB and CsrC sRNAs in Escherichia coli requires a specificity protein of the GGDEF-EAL domain superfamily, CsrD, in addition to the housekeeping nucleases RNase E and PNPase. The Csr system of E. coli contains extensive autoregulatory circuitry, which governs the expression and activity of CsrA. Interaction of the Csr system with transcriptional regulatory networks results in a variety of complex response patterns. This minireview will highlight basic principles and new insights into the workings of these complex eubacterial regulatory systems.

[1]  G. Storz,et al.  Bacterial small RNA regulators: versatile roles and rapidly evolving variations. , 2011, Cold Spring Harbor perspectives in biology.

[2]  G. Frankel,et al.  Enteropathogenic Escherichia coli: unravelling pathogenesis. , 2005, FEMS microbiology reviews.

[3]  D. B. Kearns,et al.  CsrA–FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis , 2011, Molecular microbiology.

[4]  P. Fratamico,et al.  Eavesdropping by bacteria: the role of SdiA in Escherichia coli and Salmonella enterica serovar Typhimurium quorum sensing. , 2011, Foodborne pathogens and disease.

[5]  Carlos C. Goller,et al.  Roles of pgaABCD Genes in Synthesis, Modification, and Export of the Escherichia coli Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine , 2008, Journal of bacteriology.

[6]  Ö. Melefors,et al.  The RNA binding protein CsrA controls cyclic di‐GMP metabolism by directly regulating the expression of GGDEF proteins , 2008, Molecular microbiology.

[7]  P. Blum,et al.  Genetic basis of starvation survival in nondifferentiating bacteria. , 1989, Annual review of microbiology.

[8]  Todd G. Smith,et al.  Deciphering bacterial flagellar gene regulatory networks in the genomic era. , 2009, Advances in applied microbiology.

[9]  Adrianne N. Edwards,et al.  Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression. , 2009, Journal of molecular biology.

[10]  B. J. Hinnebusch,et al.  Depolymerization of β-1,6-N-Acetyl-d-Glucosamine Disrupts the Integrity of Diverse Bacterial Biofilms , 2005, Journal of bacteriology.

[11]  H. Yang,et al.  The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability , 1995, Journal of bacteriology.

[12]  P. Babitzke,et al.  CsrA Inhibits Translation Initiation of Escherichia coli hfq by Binding to a Single Site Overlapping the Shine-Dalgarno Sequence , 2007, Journal of bacteriology.

[13]  K. Sauer,et al.  Sticky Situations: Key Components That Control Bacterial Surface Attachment , 2012, Journal of bacteriology.

[14]  E. Sonnleitner,et al.  Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa , 2009, Proceedings of the National Academy of Sciences.

[15]  T. Romeo,et al.  The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein , 1997, Journal of bacteriology.

[16]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[17]  R. Breaker Prospects for riboswitch discovery and analysis. , 2011, Molecular cell.

[18]  F. Rojo,et al.  Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression , 2012, Molecular microbiology.

[19]  M. Schubert,et al.  Gac/Rsm signal transduction pathway of γ‐proteobacteria: from RNA recognition to regulation of social behaviour , 2007, Molecular microbiology.

[20]  Tom J. Petty,et al.  CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding , 2007, Molecular microbiology.

[21]  Sidney R. Kushner,et al.  mRNA Decay in Escherichia coli Comes of Age , 2002, Journal of bacteriology.

[22]  A. Ishihama Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. , 2010, FEMS microbiology reviews.

[23]  Elizabeth Burrowes,et al.  The post-transcriptional regulator CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in animal hosts. , 2008, Microbiology.

[24]  M. Swanson,et al.  Differentiate to thrive: lessons from the Legionella pneumophila life cycle , 2004, Molecular microbiology.

[25]  S. Lory,et al.  Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA , 2009, Molecular microbiology.

[26]  M. Parsek,et al.  Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA , 2010, Molecular microbiology.

[27]  Michael Y. Galperin,et al.  C‐di‐GMP: the dawning of a novel bacterial signalling system , 2005, Molecular microbiology.

[28]  J. Vogel,et al.  Hfq and its constellation of RNA , 2011, Nature Reviews Microbiology.

[29]  S. Porwollik,et al.  Global regulation by CsrA in Salmonella typhimurium , 2003, Molecular microbiology.

[30]  Carlos C. Goller,et al.  Environmental influences on biofilm development. , 2008, Current topics in microbiology and immunology.

[31]  P. Babitzke,et al.  Regulatory Interactions of Csr Components: the RNA Binding Protein CsrA Activates csrB Transcription inEscherichia coli , 2001, Journal of bacteriology.

[32]  C. Altier,et al.  Regulation of Salmonella entericaSerovar Typhimurium Invasion Genes by csrA , 2000, Infection and Immunity.

[33]  The diguanylate cyclase YddV controls production of the exopolysaccharide poly-N-acetylglucosamine (PNAG) through regulation of the PNAG biosynthetic pgaABCD operon. , 2010, Microbiology.

[34]  V. Kaberdin,et al.  Translation initiation and the fate of bacterial mRNAs. , 2006, FEMS microbiology reviews.

[35]  N. Sabnis,et al.  Pleiotropic Regulation of Central Carbohydrate Metabolism in Escherichia coli via the Gene csrA(*) , 1995, The Journal of Biological Chemistry.

[36]  D. Giedroc,et al.  The RNA Molecule CsrB Binds to the Global Regulatory Protein CsrA and Antagonizes Its Activity in Escherichia coli * , 1997, The Journal of Biological Chemistry.

[37]  P. Babitzke,et al.  CsrA post‐transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli , 2005, Molecular microbiology.

[38]  B. Bassler,et al.  Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing , 2009, The EMBO journal.

[39]  Xin Wang,et al.  A novel sRNA component of the carbon storage regulatory system of Escherichia coli , 2003, Molecular microbiology.

[40]  R. Hengge,et al.  The σS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli , 2007, Science progress.

[41]  T. Romeo,et al.  Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli , 2002, Journal of bacteriology.

[42]  P. Babitzke,et al.  RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. , 2005, RNA.

[43]  D. Kalman,et al.  The RNA Binding Protein CsrA Is a Pleiotropic Regulator of the Locus of Enterocyte Effacement Pathogenicity Island of Enteropathogenic Escherichia coli , 2009, Infection and Immunity.

[44]  Florian C. Oberstrass,et al.  Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA , 2007, Nature Structural &Molecular Biology.

[45]  R. Kulkarni,et al.  Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri , 2006, Nucleic acids research.

[46]  R. Gourse,et al.  Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. , 2001, Journal of molecular biology.

[47]  W. L. Ruzzo,et al.  A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism , 2008, Molecular microbiology.

[48]  M. Gong,et al.  Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties , 1993, Journal of bacteriology.

[49]  D. Kalman,et al.  Honing the message: post-transcriptional and post-translational control in attaching and effacing pathogens. , 2011, Trends in microbiology.

[50]  P. Babitzke,et al.  CsrB sRNA family: sequestration of RNA-binding regulatory proteins. , 2007, Current opinion in microbiology.

[51]  F. O'Gara,et al.  Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. , 2006, Microbiology.

[52]  D. Georgellis,et al.  Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI‐1 and SPI‐2 virulence regulons through HilD , 2011, Molecular microbiology.

[53]  K. Potrykus,et al.  (p)ppGpp: still magical? , 2008, Annual review of microbiology.

[54]  M. Malecki,et al.  The critical role of RNA processing and degradation in the control of gene expression. , 2010, FEMS microbiology reviews.

[55]  L. Van Melderen,et al.  Post-transcriptional global regulation by CsrA in bacteria , 2010, Cellular and Molecular Life Sciences.

[56]  P. Dersch,et al.  The Csr/Rsm system of Yersinia and related pathogens , 2012, RNA biology.

[57]  N. Majdalani,et al.  The RpoS-mediated general stress response in Escherichia coli. , 2011, Annual review of microbiology.

[58]  P. Babitzke,et al.  Complex regulation of the global regulatory gene csrA: CsrA‐mediated translational repression, transcription from five promoters by Eσ70 and EσS, and indirect transcriptional activation by CsrA , 2011, Molecular microbiology.

[59]  Slawomir K. Grzechnik,et al.  Crystal structure of the global regulatory protein CsrA from Pseudomonas putida at 2.05 Å resolution reveals a new fold , 2005, Proteins.

[60]  A. D. Jones,et al.  CsrA Regulates Translation of the Escherichia coli Carbon Starvation Gene, cstA, by Blocking Ribosome Access to the cstA Transcript , 2003, Journal of bacteriology.

[61]  P. Babitzke,et al.  CsrA Represses Translation of sdiA, Which Encodes the N-Acylhomoserine-l-Lactone Receptor of Escherichia coli, by Binding Exclusively within the Coding Region of sdiA mRNA , 2011, Journal of bacteriology.

[62]  P. Babitzke,et al.  CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli , 2002, Molecular microbiology.

[63]  O. Melefors,et al.  The Escherichia coli CsrB and CsrC small RNAs are strongly induced during growth in nutrient-poor medium. , 2009, FEMS microbiology letters.

[64]  B. Bassler,et al.  Bacterial quorum-sensing network architectures. , 2009, Annual review of genetics.

[65]  Adrianne N. Edwards,et al.  Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium. , 2010, Environmental microbiology.

[66]  Christopher A. Vakulskas,et al.  Circuitry linking the Csr and stringent response global regulatory systems , 2011, Molecular Microbiology.

[67]  R. Kolter,et al.  The stationary phase of the bacterial life cycle. , 1993, Annual review of microbiology.

[68]  T. McDaniel,et al.  A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K‐12 , 1997, Molecular microbiology.

[69]  Carlos C. Goller,et al.  The Cation-Responsive Protein NhaR of Escherichia coli Activates pgaABCD Transcription, Required for Production of the Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine , 2006, Journal of bacteriology.

[70]  J. Vorholt,et al.  Small RNA-dependent Expression of Secondary Metabolism Is Controlled by Krebs Cycle Function in Pseudomonas fluorescens* , 2009, The Journal of Biological Chemistry.

[71]  Andrew L. Miller,et al.  Calcium signaling in cardiac myocytes. , 2011, Cold Spring Harbor perspectives in biology.

[72]  Y. Liu,et al.  Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone , 1995, Applied and environmental microbiology.

[73]  S. Gottesman The small RNA regulators of Escherichia coli: roles and mechanisms*. , 2004, Annual review of microbiology.

[74]  J. Belasco All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay , 2010, Nature Reviews Molecular Cell Biology.

[75]  D. Georgellis,et al.  Regulatory Circuitry of the CsrA/CsrB and BarA/UvrY Systems of Escherichia coli , 2002, Journal of bacteriology.

[76]  B. Ahmer,et al.  Detection of acyl-homoserine lactones by Escherichia and Salmonella. , 2011, Current opinion in microbiology.

[77]  A. J. Carpousis The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. , 2007, Annual review of microbiology.

[78]  A. Filloux,et al.  Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. , 2011, Environmental microbiology.

[79]  P. Matsumura,et al.  Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. , 2005, Journal of molecular biology.

[80]  Christopher A. Vakulskas,et al.  Translational Repression of NhaR, a Novel Pathway for Multi-Tier Regulation of Biofilm Circuitry by CsrA , 2011, Journal of bacteriology.

[81]  Xiaodong Cheng,et al.  Comprehensive Alanine-scanning Mutagenesis of Escherichia coli CsrA Defines Two Subdomains of Critical Functional Importance* , 2006, Journal of Biological Chemistry.

[82]  T. Romeo,et al.  Global regulation by the small RNA‐binding protein CsrA and the non‐coding RNA molecule CsrB , 1998, Molecular microbiology.

[83]  P. Gutiérrez,et al.  Solution Structure of the Carbon Storage Regulator Protein CsrA from Escherichia coli , 2005, Journal of bacteriology.

[84]  R. Barrangou,et al.  CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. , 2011, Annual review of genetics.

[85]  Y. Liu,et al.  Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA: repression of secondary metabolites, pathogenicity and hypersensitive reaction. , 1996, Microbiology.

[86]  H. Yang,et al.  Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product , 1996, Journal of bacteriology.

[87]  D. Georgellis,et al.  The Physiological Stimulus for the BarA Sensor Kinase , 2010, Journal of bacteriology.

[88]  D. Haas,et al.  Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens , 2007, Molecular microbiology.

[89]  P. Watnick,et al.  Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms , 2009, Microbiology and Molecular Biology Reviews.

[90]  Regine Hengge,et al.  Principles of c-di-GMP signalling in bacteria , 2009, Nature Reviews Microbiology.

[91]  M. Ackermann,et al.  Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress , 2009, Molecular microbiology.

[92]  P. Babitzke,et al.  Positive regulation of motility and flhDC expression by the RNA‐binding protein CsrA of Escherichia coli , 2001, Molecular microbiology.

[93]  S. R. Kushner,et al.  Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. , 2006, Genes & development.

[94]  J. Preston,et al.  The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation , 2004, Journal of bacteriology.

[95]  F. Rojo,et al.  The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator , 2007, Molecular microbiology.

[96]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.