ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment

[1]  Bill Bynum,et al.  Lancet , 2015, The Lancet.

[2]  F. Virgilio The Therapeutic Potential of Modifying Inflammasomes and NOD-Like Receptors , 2013 .

[3]  V. Kumar,et al.  Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? , 2013, Purinergic Signalling.

[4]  S. Ward,et al.  Mitochondrial Superoxide Generation Enhances P2X7R-Mediated Loss of Cell Surface CD62L on Naive Human CD4+ T Lymphocytes , 2013, The Journal of Immunology.

[5]  A. Thrasher,et al.  Polyphenol E Enhances the Antitumor Immune Response in Neuroblastoma by Inactivating Myeloid Suppressor Cells , 2013, Clinical Cancer Research.

[6]  F. Di Virgilio,et al.  Purines, purinergic receptors, and cancer. , 2012, Cancer research.

[7]  F. Di Virgilio,et al.  P2 receptors and immunity , 2012, Microbes and infection.

[8]  Baljit S. Khakh,et al.  Neuromodulation by Extracellular ATP and P2X Receptors in the CNS , 2012, Neuron.

[9]  F. Di Virgilio,et al.  Expression of P2X7 receptor increases in vivo tumor growth. , 2012, Cancer research.

[10]  D. Gabrilovich,et al.  Coordinated regulation of myeloid cells by tumours , 2012, Nature Reviews Immunology.

[11]  L. Zitvogel,et al.  Inflammasomes in carcinogenesis and anticancer immune responses , 2012, Nature Immunology.

[12]  F. Di Virgilio,et al.  Transient P2X7 Receptor Activation Triggers Macrophage Death Independent of Toll-like Receptors 2 and 4, Caspase-1, and Pannexin-1 Proteins* , 2012, The Journal of Biological Chemistry.

[13]  F. Di Virgilio,et al.  Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice , 2011, Science.

[14]  I. Biaggioni,et al.  Adenosinergic Regulation of the Expansion and Immunosuppressive Activity of CD11b+Gr1+ Cells , 2011, The Journal of Immunology.

[15]  L. Lazzarato,et al.  Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells , 2011, The Journal of experimental medicine.

[16]  R. Schreiber,et al.  Natural innate and adaptive immunity to cancer. , 2011, Annual review of immunology.

[17]  I. Hammami,et al.  Myeloid-derived suppressor cells exhibit two bioenergetic steady-states in vitro. , 2011, Journal of biotechnology.

[18]  M. Smyth,et al.  Extracellular adenosine triphosphate and adenosine in cancer , 2010, Oncogene.

[19]  Takashi Murakami,et al.  CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. , 2010, Gastroenterology.

[20]  V. Bronte,et al.  Myeloid-derived suppressor cell heterogeneity and subset definition. , 2010, Current opinion in immunology.

[21]  Alberto Mantovani,et al.  Macrophages, innate immunity and cancer: balance, tolerance, and diversity. , 2010, Current opinion in immunology.

[22]  E. Traggiai,et al.  Hierarchy of immunosuppressive strength among myeloid‐derived suppressor cell subsets is determined by GM‐CSF , 2009, European journal of immunology.

[23]  L. Zitvogel,et al.  Chemotherapy induces ATP release from tumor cells , 2009, Cell cycle.

[24]  J. Tschopp,et al.  Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors , 2009, Nature Medicine.

[25]  F. Di Virgilio,et al.  Extracellular nucleotides as negative modulators of immunity. , 2009, Current opinion in pharmacology.

[26]  F. Di Virgilio,et al.  Expression of the P2X7 Receptor Increases the Ca2+ Content of the Endoplasmic Reticulum, Activates NFATc1, and Protects from Apoptosis* , 2009, Journal of Biological Chemistry.

[27]  F. Di Virgilio,et al.  P2X7: a growth-promoting receptor—implications for cancer , 2009, Purinergic Signalling Purinergic Signalling.

[28]  Srinivas Nagaraj,et al.  Myeloid-derived suppressor cells as regulators of the immune system , 2009, Nature Reviews Immunology.

[29]  Michelle Collazo,et al.  Subsets of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice1 , 2008, The Journal of Immunology.

[30]  T. Whiteside The tumor microenvironment and its role in promoting tumor growth , 2008, Oncogene.

[31]  D. Carbone,et al.  Host A(2B) adenosine receptors promote carcinoma growth. , 2008, Neoplasia.

[32]  F. Di Virgilio,et al.  Increased Level of Extracellular ATP at Tumor Sites: In Vivo Imaging with Plasma Membrane Luciferase , 2008, PloS one.

[33]  I. Borrello,et al.  Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. , 2008, Cancer research.

[34]  P. De Baetselier,et al.  Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. , 2008, Blood.

[35]  F. Di Virgilio,et al.  The P2X7 receptor: a key player in IL-1 processing and release , 2007, The Journal of Immunology.

[36]  K. Stenmark,et al.  Extracellular ATP is a pro-angiogenic factor for pulmonary artery vasa vasorum endothelial cells , 2007, Angiogenesis.

[37]  V. Kuchroo,et al.  Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression , 2007, The Journal of experimental medicine.

[38]  J. Kappes,et al.  Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. , 2007, Blood.

[39]  A. Ohta,et al.  A2A adenosine receptor protects tumors from antitumor T cells , 2006, Proceedings of the National Academy of Sciences.

[40]  F. Di Virgilio,et al.  The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. , 2006, Cancer research.

[41]  C. Divino,et al.  Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. , 2006, Cancer research.

[42]  P. Sinha,et al.  Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. , 2005, Cancer research.

[43]  F. Di Virgilio,et al.  A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. , 2005, Molecular biology of the cell.

[44]  F. Di Virgilio,et al.  Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. , 2005, Molecular biology of the cell.

[45]  B. Rollins,et al.  CCL2 (monocyte chemoattractant protein-1) and cancer. , 2004, Seminars in cancer biology.

[46]  S. Groshen,et al.  Natural Killer T Cells Infiltrate Neuroblastomas Expressing the Chemokine CCL2 , 2004, The Journal of experimental medicine.

[47]  M. Slater,et al.  Early prostate cancer detected using expression of non‐functional cytolytic P2X7 receptors , 2004, Histopathology.

[48]  F. Di Virgilio,et al.  P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. , 2002, Blood.

[49]  D. Gabrilovich,et al.  Mechanism of Immune Dysfunction in Cancer Mediated by Immature Gr-1+ Myeloid Cells1 , 2001, The Journal of Immunology.

[50]  V. Mehta,et al.  ATP-stimulated Release of Interleukin (IL)-1β and IL-18 Requires Priming by Lipopolysaccharide and Is Independent of Caspase-1 Cleavage* , 2001, The Journal of Biological Chemistry.

[51]  H. Young,et al.  Immortalized Myeloid Suppressor Cells Trigger Apoptosis in Antigen-Activated T Lymphocytes1 , 2000, The Journal of Immunology.

[52]  R. Ronca,et al.  Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. , 2000, Blood.

[53]  Chih‐Chung Lin,et al.  P2Y2 receptor‐mediated proliferation of C6 glioma cells via activation of Ras/Raf/MEK/MAPK pathway , 2000, British journal of pharmacology.

[54]  F. Di Virgilio,et al.  Increased Proliferation Rate of Lymphoid Cells Transfected with the P2X7 ATP Receptor* , 1999, The Journal of Biological Chemistry.

[55]  D. Ferrari,et al.  P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death , 1999, FEBS letters.

[56]  D. Ferrari,et al.  Cytolytic P2X purinoceptors , 1998, Cell Death and Differentiation.

[57]  S. Gillies,et al.  Targeted interleukin-2 therapy for spontaneous neuroblastoma metastases to bone marrow. , 1997, Journal of the National Cancer Institute.

[58]  E. Kawashima,et al.  The Cytolytic P2Z Receptor for Extracellular ATP Identified as a P2X Receptor (P2X7) , 1996, Science.

[59]  F. Di Virgilio,et al.  The purinergic P2Z receptor of human macrophage cells. Characterization and possible physiological role. , 1995, The Journal of clinical investigation.

[60]  F. Di Virgilio,et al.  Extracellular nucleotides mediate Ca2+ fluxes in J774 macrophages by two distinct mechanisms. , 1988, The Journal of biological chemistry.

[61]  F. Di Virgilio,et al.  Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? , 2008, Endocrinology.

[62]  F. Di Virgilio The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. , 1995, Immunology today.