Applications of a Global Workspace Framework to Mathematical Discovery

Systems which combine various forms of reasoning such as deductive inference and symbolic manipulation have repeatedly been shown to be more effective than stand-alone systems. In general, however, the combined systems are ad-hoc and designed for a single task. We present a generic framework for combining reasoning processes which is based on the theory of the Global Workspace Architecture. Within this blackboard-style framework, processes attached to a workspace propose information to be broadcast, along with a rating of the importance of the information, and only the most important is broadcast to all the processes, which react accordingly. To begin to demonstrate the value of the framework, we show that the tasks undertaken by previous ad-hoc systems can be performed by a configuration of the framework. To this end, we describe configurations for theorem discovery and conjecture making respectively, which produce comparable results to the previous ICARUS and HOMER systems. We further describe a novel application where we use a configuration of the framework to identify potentially interesting specialisations of finite algebras.

[1]  Commutants of Bol loops of odd order , 2002, math/0207119.

[2]  Jacques Herbrand Recherches sur la théorie de la démonstration , 1930 .

[3]  Robert Veroff,et al.  Solving Open Questions and Other Challenge Problems Using Proof Sketches , 2001, Journal of Automated Reasoning.

[4]  B. Baars The conscious access hypothesis: origins and recent evidence , 2002, Trends in Cognitive Sciences.

[5]  Alě S Dr´apal,et al.  ON LOOP IDENTITIES THAT CAN BE OBTAINED BY A NUCLEAR IDENTIFICATION , 2007 .

[6]  H. O. Pflugfelder Quasigroups and loops : introduction , 1990 .

[7]  Christian Urban Classical Logic and Computation , 2000 .

[8]  Simon Colton,et al.  Automatic Generation of Classification Theorems for Finite Algebras , 2004, IJCAR.

[9]  M. Shanahan,et al.  Applying global workspace theory to the frame problem , 2005, Cognition.

[10]  J. Slaney,et al.  Generating loops with the inverse property , 2008 .

[11]  Michael Fisher,et al.  An Open Approach to Concurrent Theorem-Proving , 1995 .

[12]  MSc PhD Simon Colton BSc Automated Theory Formation in Pure Mathematics , 2002, Distinguished Dissertations.

[13]  Alexander Leitsch,et al.  Towards a clausal analysis of cut-elimination , 2006, J. Symb. Comput..

[14]  Kenneth L. McMillan,et al.  Interpolation and SAT-Based Model Checking , 2003, CAV.

[15]  Sergey Berezin,et al.  CVC Lite: A New Implementation of the Cooperating Validity Checker Category B , 2004, CAV.

[16]  Jian Zhang Constructing finite algebras with FALCON , 2004, Journal of Automated Reasoning.

[17]  J. Phillips,et al.  A scoop from groups: Equational foundations for loops , 2015, 1509.05461.

[18]  Christoph Weidenbach,et al.  SPASS version 2.0 , 2002 .

[19]  Simon Colton,et al.  Automatic Generation of Implied Constraints , 2006, ECAI.

[20]  Kenneth Kunen,et al.  Diassociativity in Conjugacy Closed Loops , 2002, math/0209279.

[21]  M. Kinyon,et al.  Primary Decompositions in Varieties of Commutative Diassociative Loops , 2007, math/0702874.

[22]  M. Curr In our case , 2001 .

[23]  C-LOOPS: EXTENSIONS AND CONSTRUCTIONS , 2004, math/0412390.

[24]  William McCune,et al.  OTTER 3.0 Reference Manual and Guide , 1994 .

[25]  Simon Colton,et al.  Managing Automatically Formed Mathematical Theories , 2006, MKM.

[26]  John K. Slaney,et al.  FINDER: Finite Domain Enumerator - System Description , 1994, CADE.

[27]  Maria Paola Bonacina,et al.  PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems , 1996, J. Symb. Comput..

[28]  Stan Franklin,et al.  IDA, a Conscious Artifact? , 2006 .

[29]  Thomas Hillenbrand Citius altius fortius: Lessons learned from the Theorem Prover WALDMEISTER , 2003, Electron. Notes Theor. Comput. Sci..

[30]  Claude Kirchner,et al.  Principles of Superdeduction , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[31]  Petr Vojtěchovský,et al.  The varieties of loops of Bol-Moufang type , 2005 .

[32]  Alexander Leitsch,et al.  Herbrand Sequent Extraction , 2008, AISC/MKM/Calculemus.

[33]  Gilles Dequen,et al.  The Non-existence of (3, 1, 2)-Conjugate Orthogonal Idempotent Latin Square of Order 10 , 2001, CP.

[34]  Stefan Hetzl Proof Profiles: Characteristic Clause Sets and Proof Transformations , 2008 .

[35]  Gilles Audemard,et al.  The eXtended Least Number Heuristic , 2001, IJCAR.

[36]  Jorg Schwenk,et al.  A classification of abelian quasigroups , 1999 .

[37]  B. Baars A cognitive theory of consciousness , 1988 .

[38]  Strongly right alternative rings and Bol loops , 2005, math/0508005.

[39]  Geoff Sutcliffe,et al.  The state of CASC , 2006, AI Commun..

[40]  William McCune,et al.  Automated Deduction in Equational Logic and Cubic Curves , 1996, Lecture Notes in Computer Science.

[41]  Simon Colton,et al.  Automated conjecture making in number theory using HR, Otter and Maple , 2005, J. Symb. Comput..

[42]  Abdul Sattar,et al.  Old Resolution Meets Modern SLS , 2005, AAAI.

[43]  Andrei Voronkov,et al.  The design and implementation of VAMPIRE , 2002, AI Commun..

[44]  François Bry,et al.  SATCHMO: A Theorem Prover Implemented in Prolog , 1988, CADE.

[45]  Kenneth Kunen,et al.  Every diassociative A-loop is Moufang , 2000 .

[46]  Masayuki Fujita,et al.  Automatic Generation of Some Results in Finite Algebra , 1993, IJCAI.

[47]  A. Graesser,et al.  A Software Agent Model of Consciousness , 1999, Consciousness and Cognition.

[48]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[49]  Arpad Kelemen,et al.  Constraint Satisfaction In "Conscious" Software Agents--A Practical Application , 2005, Appl. Artif. Intell..

[50]  Volker Sorge,et al.  Applying SAT Solving in Classification of Finite Algebras , 2005, Journal of Automated Reasoning.

[51]  Steve Linton,et al.  Generic SBDD Using Computational Group Theory , 2003, CP.

[52]  Mark E. Stickel,et al.  Implementing the Davis–Putnam Method , 2000, Journal of Automated Reasoning.

[53]  G. Pólya Mathematics and Plausible Reasoning , 1958 .

[54]  Mats Carlsson,et al.  An Open-Ended Finite Domain Constraint Solver , 1997, PLILP.

[55]  Alexander Leitsch,et al.  Cut-elimination and Redundancy-elimination by Resolution , 2000, J. Symb. Comput..

[56]  Christoph Benzmüller,et al.  System Description: LEO - A Higher-Order Theorem Prover , 1998, CADE.

[57]  Alexander Leitsch,et al.  Proof Transformations and Structural Invariance , 2006, Algebraic and Proof-theoretic Aspects of Non-classical Logics.

[58]  Stephan Schulz,et al.  E - a brainiac theorem prover , 2002, AI Commun..

[59]  R. Maddux Some varieties containing relation algebras , 1982 .

[60]  Michael Fisher Characterising simple negotiation as distributed agent-based theorem-proving-a preliminary report , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[61]  Samuel R. Buss,et al.  On Herbrand's Theorem , 1994, LCC.

[62]  Kenneth Kunen,et al.  Quasigroups, Loops, and Associative Laws , 1996 .

[63]  B. McKay,et al.  Small latin squares, quasigroups, and loops , 2007 .

[64]  Alexander Leitsch,et al.  Cut-Elimination: Experiments with CERES , 2005, LPAR.

[65]  K. Kunen,et al.  A Generalization of Moufang and Steiner Loops , 2001, math/0105015.

[66]  M. Kinyon,et al.  The structure of F-quasigroups , 2005, math/0510298.

[67]  Nachum Dershowitz,et al.  Abstract Effective Models , 2006, Electron. Notes Theor. Comput. Sci..

[68]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[69]  Josef Urban MPTP – Motivation, Implementation, First Experiments , 2004, Journal of Automated Reasoning.

[70]  Thomas A. Henzinger,et al.  Abstractions from proofs , 2004, POPL.

[71]  Bart Selman,et al.  Problem Structure in the Presence of Perturbations , 1997, AAAI/IAAI.

[72]  Michael Wooldridge,et al.  Distributed Problem-Solving as Concurrent Theorem Proving , 1997, MAAMAW.

[73]  Alan K. Mackworth Constraint Satisfaction , 1985 .

[74]  John Slaney,et al.  Counting loops with the inverse property , 2008 .

[75]  Brunella Gerla,et al.  Algebraic and Proof-theoretic Aspects of Non-classical Logics, Papers in Honor of Daniele Mundici on the Occasion of His 60th birthday , 2007, Algebraic and Proof-theoretic Aspects of Non-classical Logics.

[76]  K. Kunen The structure of conjugacy closed loops , 2000 .

[77]  G. Pólya,et al.  Mathematics and Plausible Reasoning: Vol. I: Induction and Analogy in Mathematics , 1979 .

[78]  Hantao Zhang,et al.  SEM: a System for Enumerating Models , 1995, IJCAI.

[79]  Kim Marriott,et al.  The Modelling Language Zinc , 2006, CP.

[80]  Kenneth Kunen,et al.  Power-associative, conjugacy closed loops , 2005 .

[81]  Anderson Faustino da Silva,et al.  Design, Implementation, and Evaluation of a Dynamic Compilation Framework for the YAP System , 2007, ICLP.

[82]  Alexander Leitsch,et al.  Proof Transformation by CERES , 2006, MKM.

[83]  Simon Colton,et al.  The TM System for Repairing Non-Theorems , 2005, D/PDPAR@IJCAR.

[84]  M. Kinyon,et al.  Rectangular quasigroups and rectangular loops , 2005 .

[85]  Alexander Leitsch,et al.  CERES: An analysis of Fürstenberg's proof of the infinity of primes , 2008, Theoretical Computer Science.

[86]  Volker Sorge,et al.  Combined reasoning by automated cooperation , 2008, J. Appl. Log..

[87]  J. D. Phillips,et al.  C-loops: An introduction , 2007 .

[88]  When is the commutant of a Bol loop a subloop , 2006, math/0601363.