THz Rectennas and Their Design Rules

The increasing demand for more efficient energy harvesting solutions has urged research for better harvesting solutions than the presently-available ones. While p-n junction solar cells have become commercially widespread, they are expensive and suffer from poor efficiency figures hardly reaching 20%. Other radiation-electricity converters such as rectennas have a theoretical limit in excess of 80%. However, no efficient rectenna solution for the terahertz frequency band has been commercialized or presented in the academic literature. In fact, there are many obstructions to an efficient solution. The aim of this paper is to address the key points towards an efficient and commercially-available solution by briefly reviewing the relevant literature and so identifying five factors that should be addressed in order to reach an efficient solution.

[1]  A. F.,et al.  Thermionic Emission , 1936, Nature.

[2]  Hathaikarn Manuspiya Electrical Properties of Niobium Based Oxides-Ceramics and Single Crystal Fibers Grown by the Laser-Heated Pedestal Growth (LHPG) Technique , 2003 .

[3]  G. Temple Static and Dynamic Electricity , 1940, Nature.

[4]  M. Paulsson Non Equilibrium Green's Functions for Dummies: Introduction to the One Particle NEGF equations , 2002, cond-mat/0210519.

[5]  Anthony Centeno,et al.  The rectenna device: From theory to practice (a review) , 2014 .

[6]  Alexandre Mayer,et al.  Three-dimensional analysis of the rectifying properties of geometrically asymmetric metal-vacuum-metal junctions treated as an oscillating barrier , 2008 .

[7]  Hans-Georg Meyer,et al.  Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples , 2013 .

[8]  D. Law,et al.  40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .

[9]  Steve Beeby,et al.  (Invited) Tunnel-Barrier Rectifiers for Optical Nantennas , 2016 .

[10]  S. Chakrabarty,et al.  Wien's Displacement Law in Rindler Space , 2015, 1509.06491.

[11]  C. Jirauschek,et al.  Accuracy of Transfer Matrix Approaches for Solving the Effective Mass SchrÖdinger Equation , 2009, IEEE Journal of Quantum Electronics.

[12]  Yang Yang,et al.  Make perovskite solar cells stable , 2017, Nature.

[13]  Javier Alda,et al.  Distributed bolometric effect in optical antennas and resonant structures , 2012 .

[14]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[15]  Sachit Grover,et al.  Geometric Diodes for Optical Rectennas , 2013 .

[16]  William C. Brown The Microwave Powered Helicopter , 1966 .

[17]  John G. Simmons,et al.  Potential Barriers and Emission‐Limited Current Flow Between Closely Spaced Parallel Metal Electrodes , 1964 .

[18]  Lukas Novotny,et al.  Spatial coherence of sunlight and its implications for light management in photovoltaics , 2015 .

[19]  Richard Corkish,et al.  Solar energy collection by antennas , 2002 .

[20]  S. Blundell,et al.  The Dirac Equation , 2014 .

[21]  J. P. Gordon,et al.  Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films , 1963 .

[22]  William C. Brown,et al.  Optimization of the Efficiency and Other Properties of the Rectenna Element , 1976 .

[23]  G. Woan,et al.  A generalized measurement equation and van Cittert‐Zernike theorem for wide‐field radio astronomical interferometry , 2008, 0812.0141.

[24]  Daniela Dragoman,et al.  On-wafer graphene diodes for high-frequency applications , 2013, 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[25]  Das,et al.  Size and temperature effects on the Seebeck coefficient of thin bismuth films. , 1987, Physical review. B, Condensed matter.

[26]  Marc J. Feldman,et al.  Quantum detection at millimeter wavelengths , 1985 .

[27]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[28]  Hassan Bajwa,et al.  Energy harvesting using Graphene based antenna for UV spectrum , 2014, IEEE Long Island Systems, Applications and Technology (LISAT) Conference 2014.

[29]  J. Whinnery,et al.  Characteristics of integrated MOM junctions at DC and at optical frequencies , 1978, IEEE Journal of Quantum Electronics.

[30]  Richard M. Osgood,et al.  Planar Metal-Insulator-Metal Diodes Based on the Nb/Nb2O5/X Material System , 2013 .

[31]  Evelyn N. Wang,et al.  Erratum: A nanophotonic solar thermophotovoltaic device (Nature Nanotechnology (2014) 9 (126-130)) , 2015 .

[32]  Daniel P. W. Ellis,et al.  Modeling nonlinear circuits with linearized dynamical models via kernel regression , 2013, 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[33]  P. Hänggi,et al.  Driven quantum tunneling , 1998 .

[34]  Josef A. Nossek,et al.  Nano-Antenna Arrays for the Infrared Regime , 2014, WSA.

[35]  Gang Li,et al.  Linearly enhanced response of thermopower in cascaded array of dual-stripe single-metal thermocouples , 2017 .

[36]  W. D. Slafer,et al.  Techniques for Roll-to-Roll Manufacturing of Flexible Rectenna Solar Cells , 2013 .

[37]  Ken Roessler,et al.  Clean and repair of EUV photomasks , 2011, Photomask Technology.

[38]  Garret Moddel,et al.  Rectenna solar cells , 2013 .

[39]  Alessandra Costanzo,et al.  State-of-the-art harmonic-balance simulation of forced nonlinear microwave circuits by the piecewise technique , 1992 .

[40]  Peter Russer,et al.  A Nanostructured Long-Wave Infrared Range Thermocouple Detector , 2015, IEEE Transactions on Terahertz Science and Technology.

[41]  Jae Choon Cha,et al.  35 and 94 GHz rectifying antenna systems , 1991 .

[42]  F. Sohrabi,et al.  Optimization of Third Generation Nanostructured Silicon- Based Solar Cells , 2013 .

[43]  A. F. Hebard,et al.  Rectification at Graphene-Semiconductor Interfaces: Zero-Gap Semiconductor-Based Diodes , 2011, 1105.4811.

[44]  Rolf Landauer,et al.  Traversal Time for Tunneling , 1985 .

[45]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[46]  John E. Bjorkholm EUV Lithography — The Successor to Optical Lithography ? , 1998 .

[47]  Terrance P. O'Regan,et al.  Modeling, Fabrication, and Electrical Testing of Metal-Insulator-Metal Diode , 2011 .

[48]  J. Zi,et al.  Transfer matrix method for optics in graphene layers , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  Javier Alda,et al.  Seebeck nanoantennas for infrared detection and energy harvesting applications , 2015, 2015 9th European Conference on Antennas and Propagation (EuCAP).

[50]  G. Bastard,et al.  Superlattice band structure in the envelope-function approximation , 1981 .

[51]  Ali Javan,et al.  The MOM tunneling diode - Theoretical estimate of its performance at microwave and infrared frequencies , 1978 .

[52]  M G Burt,et al.  Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures , 1999 .

[53]  John F. Conley,et al.  Impact of Electrode Roughness on Metal-Insulator-Metal (MIM) Diodes and Step Tunneling in Nanolaminate Tunnel Barrier Metal-Insulator-Insulator-Metal (MIIM) Diodes , 2013 .

[54]  Sachit Grover,et al.  Metal Single-Insulator and Multi-Insulator Diodes for Rectenna Solar Cells , 2013 .

[55]  H. Rothuizen,et al.  Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation , 1998 .

[56]  Prakash Periasamy,et al.  Metal-insulator-metal diodes: role of the insulator layer on the rectification performance. , 2013, Advanced materials.

[57]  Federico Capasso,et al.  Harvesting renewable energy from Earth’s mid-infrared emissions , 2014, Proceedings of the National Academy of Sciences.

[58]  R. H. Good,et al.  A WKB-Type Approximation to the Schrödinger Equation , 1953 .

[59]  Alessandra Costanzo,et al.  Infrared nano-rectennas exploiting on-demand laser sources , 2014, 2014 IEEE RFID Technology and Applications Conference (RFID-TA).

[60]  V. Konopsky,et al.  Long-range plasmons in lossy metal films on photonic crystal surfaces. , 2009, Optics letters.

[61]  Zixu James Zhu,et al.  Graphene geometric diodes for optical rectennas , 2014 .

[62]  P. Würfel,et al.  Theoretical limits of thermophotovoltaic solar energy conversion , 2003 .

[63]  S. T. Eng,et al.  Solving the Schrodinger equation in arbitrary quantum-well potential profiles using the transfer matrix method , 1990 .

[64]  Sachit Grover,et al.  Optical Frequency Rectification , 2013 .

[65]  Sachit Grover,et al.  Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers , 2012 .

[66]  Panu Koppinen Bias and temperature dependence analysis of the tunneling current of normal metal-insulator-normal metal tunnel junctions , 2003 .

[67]  Hwann-Kaeo Chiou,et al.  High-Efficiency Dual-Band On-Chip Rectenna for 35- and 94-GHz Wireless Power Transmission in 0.13-$\mu{\hbox {m}}$ CMOS Technology , 2010, IEEE Transactions on Microwave Theory and Techniques.

[68]  Paolo Lugli,et al.  Electrical and morphological characterization of transfer-printed Au/Ti/TiOx/p+-Si nano- and microstructures with plasma-grown titanium oxide layers , 2016 .

[69]  Thomas E. Vandervelde,et al.  Thermophotovoltaics: An Alternative to and Potential Partner with Rectenna Energy Harvesters , 2013 .

[70]  S. Stellingwerff,et al.  Solar energy harvesting using graphene rectennas : a proof-of-concept study , 2015 .

[71]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[72]  Saumil Joshi,et al.  Efficiency limits of rectenna solar cells: Theory of broadband photon-assisted tunneling , 2013 .

[73]  Michael Tinkham,et al.  Photon‐assisted tunneling at 246 and 604 GHz in small‐area superconducting tunnel junctions , 1983 .

[74]  B. Berland,et al.  Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell, Final Report, 1 August 2001-30 September 2002 , 2003 .

[75]  Alessandra Costanzo,et al.  Towards a terahertz direct receiver based on graphene up to 10 THz , 2014 .

[76]  Weidong Zhou,et al.  Flexible solar cells based on stacked crystalline semiconductor nanomembranes on plastic substrates , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[77]  Prakash Periasamy,et al.  Fabrication and Characterization of MIM Diodes Based on Nb/Nb2O5 Via a Rapid Screening Technique , 2011, Advanced materials.

[78]  J. Gordon,et al.  Solar and Thermal Aperture Antenna Coherence Performance Limits , 2013 .

[79]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .

[80]  E. A. Soliman,et al.  Theoretical Study of Metal-Insulator-Metal Tunneling Diode Figures of Merit , 2013, IEEE Journal of Quantum Electronics.

[81]  Sachit Grover,et al.  Graphene geometric diodes for terahertz rectennas , 2013 .

[82]  H. Goldsmid,et al.  The Seebeck and Peltier effects , 2017 .

[83]  Wolfgang Porod,et al.  Rectennas Revisited , 2013, IEEE Transactions on Nanotechnology.

[84]  S. S. Penner,et al.  A statement of purpose and goals , 1976 .

[85]  Paolo Lugli,et al.  Large Area Nano-transfer Printing of Sub-50-nm Metal Nanostructures Using Low-cost Semi-flexible Hybrid Templates , 2016, Nanoscale Research Letters.

[86]  Amir Boag,et al.  Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band. , 2011, Optics letters.

[87]  Mircea Dragoman,et al.  Geometrically induced rectification in two-dimensional ballistic nanodevices , 2013 .

[88]  Datta,et al.  Steady-state transport in mesoscopic systems illuminated by alternating fields. , 1992, Physical review. B, Condensed matter.

[89]  Peter Russer,et al.  High-Speed Antenna-Coupled Terahertz Thermocouple Detectors and Mixers , 2015, IEEE Transactions on Microwave Theory and Techniques.

[90]  Alessandra Costanzo,et al.  Graphene-based nano-rectenna in the far infrared frequency band , 2014, 2014 44th European Microwave Conference.

[91]  David M. Bierman,et al.  A nanophotonic solar thermophotovoltaic device. , 2014, Nature nanotechnology.

[92]  W. R. Smythe Static and Dynamic Electricity , 1989 .

[93]  Charalampos C. Tsimenidis,et al.  Overview of Nanoantennas for Solar Rectennas , 2013 .

[94]  Mircea Dragoman,et al.  Graphene rectenna for efficient energy harvesting at terahertz frequencies , 2016 .

[95]  Hui Chun Liu Time-dependent approach to double-barrier quantum well oscillators , 1988 .

[96]  Garret Moddel Will Rectenna Solar Cells Be Practical , 2013 .

[97]  Wolfgang Porod,et al.  Large-Area Fabrication of Antennas and Nanodiodes , 2013 .

[98]  Truscott Wave functions in the presence of a time-dependent field: Exact solutions and their application to tunneling. , 1993, Physical review letters.