Nano-Watt Modular Integrated Circuits for Wireless Neural Interface.

[1]  J. A. Wilson,et al.  Two-dimensional movement control using electrocorticographic signals in humans , 2008, Journal of neural engineering.

[2]  V. Peluso,et al.  Toward sub 1 V analog integrated circuits in submicron standard CMOS technologies , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[3]  F. Solzbacher,et al.  Integrated wireless neural interface based on the Utah electrode array , 2009, Biomedical microdevices.

[4]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[5]  Michael P. Flynn,et al.  A wirelessly powered log-based closed-loop deep brain stimulation SoC with two-way wireless telemetry for treatment of neurological disorders , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[6]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[7]  Euisik Yoon,et al.  A 1μW 85nV/√Hz pseudo open-loop preamplifier with programmable band-pass filter for neural interface system , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[8]  Carlos Galup-Montoro,et al.  A 2-nW 1.1-V self-biased current reference in CMOS technology , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  Euisik Yoon,et al.  BioBolt: A minimally-invasive neural interface for wireless epidural recording by intra-skin communication , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[10]  Ying Yao A 1024-site neural stimulating array with on -chip current generation. , 2005 .

[11]  A.-T. Avestruz,et al.  A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials , 2007, IEEE Journal of Solid-State Circuits.

[12]  Yong Lian,et al.  A 1V 22µW 32-channel implantable EEG recording IC , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[13]  John G. Webster,et al.  Medical Instrumentation: Application and Design , 1997 .

[14]  Maysam Ghovanloo,et al.  A Low-Noise Preamplifier with Adjustable Gain and Bandwidth for Biopotential Recording Applications , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[15]  K. Wise,et al.  An integrated-circuit approach to extracellular microelectrodes. , 1970, IEEE transactions on bio-medical engineering.

[16]  Hoi-Jun Yoo,et al.  A 10.8 mW Body Channel Communication/MICS Dual-Band Transceiver for a Unified Body Sensor Network Controller , 2009, IEEE Journal of Solid-State Circuits.

[17]  Pedram Mohseni,et al.  A fully integrated neural recording amplifier with DC input stabilization , 2004, IEEE Transactions on Biomedical Engineering.

[18]  Carver A. Mead,et al.  Analog VLSI adaptive logarithmic wide-dynamic-range photoreceptor , 1994 .

[19]  Fan Zhang,et al.  A 500µW neural tag with 2µVrms AFE and frequency-multiplying MICS/ISM FSK transmitter , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[20]  R. Genov,et al.  256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes , 2009, IEEE Journal of Solid-State Circuits.

[21]  Maysam Ghovanloo,et al.  An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[22]  K. Miller,et al.  ECoG observations of power-law scaling in the human cortex , 2007, 0712.0846.

[23]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .

[24]  Takashi Fujikado,et al.  A Tissue Change After Suprachoroidal-Transretinal Stimulation with High Electrical Current in Rabbits , 2007 .

[25]  Refet Firat Yazicioglu,et al.  A 30 $\mu$ W Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring , 2011, IEEE Journal of Solid-State Circuits.

[26]  K. Horch,et al.  A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array , 1991, IEEE Transactions on Biomedical Engineering.

[27]  P. Merken,et al.  Integrated low-power 24-channel EEG front-end , 2005 .

[28]  David Blaauw,et al.  A 0.5V 2.2pW 2-transistor voltage reference , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[29]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[30]  Abdelhalim Bendali,et al.  A 1-V CMOS Current Reference With Temperature and Process Compensation , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Franco Maloberti,et al.  A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[32]  G. Iannaccone,et al.  A Sub-1 V, 10 ppm/°C, Nanopower Voltage Reference Generator , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[33]  Eric A. M. Klumperink,et al.  A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[34]  Shuichi Shoji,et al.  A very low-power consumption wireless ECG monitoring system using body as a signal transmission medium , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[35]  S. Gambini,et al.  Low-Power Successive Approximation Converter With 0.5 V Supply in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[36]  Marc Simon Wegmüller,et al.  Intra-body communication for biomedical sensor networks , 2007 .

[37]  J. Holleman,et al.  A Sub-Microwatt Low-Noise Amplifier for Neural Recording , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[38]  Refet Firat Yazicioglu,et al.  Ultra-low power biopotential interfaces and their application in wearable and implantable systems , 2007 .

[39]  Rajesh P. N. Rao,et al.  Generalized Features for Electrocorticographic BCIs , 2008, IEEE Transactions on Biomedical Engineering.

[40]  L. Ratti,et al.  Noise Characterization of 130 nm and 90 nm CMOS Technologies for Analog Front-end Electronics , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[41]  R.R. Harrison,et al.  Local field potential measurement with low-power analog integrated circuit , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[42]  Chorng-Kuang Wang,et al.  A 8-bit 500-KS/s low power SAR ADC for bio-medical applications , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[43]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[44]  Yong Ping Xu,et al.  A 1V 2.3/spl mu/W Biomedical Signal Acquisition IC , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[45]  Jan M. Rabaey,et al.  A 0.013mm2 5μW DC-coupled neural signal acquisition IC with 0.5V supply , 2011, 2011 IEEE International Solid-State Circuits Conference.

[46]  A.-T. Avestruz,et al.  A 5 $\mu$ W/Channel Spectral Analysis IC for Chronic Bidirectional Brain–Machine Interfaces , 2008, IEEE Journal of Solid-State Circuits.

[47]  P. Nunez,et al.  Spatial filtering and neocortical dynamics: estimates of EEG coherence , 1998, IEEE Transactions on Biomedical Engineering.

[48]  Amir M. Sodagar,et al.  Microelectrodes, Microelectronics, and Implantable Neural Microsystems , 2008, Proceedings of the IEEE.

[49]  P. Ruther,et al.  The NeuroProbes Project , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[50]  Rahul Sarpeshkar,et al.  An Energy-Efficient Micropower Neural Recording Amplifier , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[51]  Brian Otis,et al.  A Low-Power ECoG/EEG Processing IC With Integrated Multiband Energy Extractor , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[52]  Suhwan Kim,et al.  A low-power referenceless clock and data recovery circuit with clock-edge modulation for biomedical sensor applications , 2011, IEEE/ACM International Symposium on Low Power Electronics and Design.

[53]  B. Wooley,et al.  A 1.8-V digital-audio sigma-delta modulator in 0.8-μm CMOS , 1997, IEEE J. Solid State Circuits.

[54]  J. Fellrath,et al.  CMOS analog integrated circuits based on weak inversion operations , 1977 .

[55]  G. Schalk,et al.  Brain-Computer Interfaces Using Electrocorticographic Signals , 2011, IEEE Reviews in Biomedical Engineering.

[56]  Andrew B. Schwartz,et al.  Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics , 2006, Neuron.

[57]  Janusz A. Starzyk,et al.  A DC-DC charge pump design based on voltage doublers , 2001 .

[58]  D J Weber,et al.  Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[59]  Kenji Shiba,et al.  Development of wearable intra-body communication devices , 2003 .

[60]  Khalil Najafi,et al.  Extremely-Wide-Range Supply-Independent CMOS Voltage References for Telemetry-Powering Applications , 2006 .

[61]  Moo Sung Chae,et al.  A 128-Channel 6mW Wireless Neural Recording IC with On-the-Fly Spike Sorting and UWB Tansmitter , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[62]  A. Scheiner,et al.  Imbalanced biphasic electrical stimulation: Muscle tissue damage , 1990, [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[63]  B. Ziaie,et al.  An Integrated CMOS Bio-potential Amplifier with a Feed-Forward DC Cancellation Topology , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[64]  Kensall D. Wise,et al.  Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays , 2005, IEEE Transactions on Biomedical Engineering.

[65]  Maysam Ghovanloo,et al.  An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[66]  R. Kuzniecky,et al.  Ambulatory EEG monitoring. , 2017, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[67]  Marco Weiergräber,et al.  Electrocorticographic and deep intracerebral EEG recording in mice using a telemetry system. , 2005, Brain research. Brain research protocols.

[68]  Andreas Kaiser,et al.  Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping , 2001, IEEE J. Solid State Circuits.

[69]  Rahul Sarpeshkar,et al.  A Low-Power 32-Channel Digitally Programmable Neural Recording Integrated Circuit , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[70]  Mohamad Sawan,et al.  A Low-Power Integrated Bioamplifier With Active Low-Frequency Suppression , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[71]  P. R. Gray,et al.  A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.

[72]  Thoams Guthrie Zimmerman Personal area networks (PAN) : near-field intra-body communication , 1995 .

[73]  W. Liu,et al.  A 128-Channel 6 mW Wireless Neural Recording IC With Spike Feature Extraction and UWB Transmitter , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[74]  D. McCreery,et al.  Damage in peripheral nerve from continuous electrical stimulation: Comparison of two stimulus waveforms , 2006, Medical and Biological Engineering and Computing.

[75]  P. Kinget,et al.  A 0.5V 8bit 10Msps Pipelined ADC in 90nm CMOS , 2007, 2007 IEEE Symposium on VLSI Circuits.

[76]  R. Normann,et al.  Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex , 1998, Journal of Neuroscience Methods.

[77]  Refet Firat Yazicioglu,et al.  A 700µW 8-channel EEG/contact-impedance acquisition system for dry-electrodes , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[78]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[79]  Refet Firat Yazicioglu,et al.  A 200 $\mu$ W Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems , 2008, IEEE Journal of Solid-State Circuits.

[80]  P. Gray,et al.  A 1 . 5V , 10-bit , 14 . 3-MS / s CMOS Pipeline Analog-to-Digital Converter , 1999 .

[81]  Qing Bai,et al.  Single-unit neural recording with active microelectrode arrays , 2001, IEEE Transactions on Biomedical Engineering.

[82]  Pradip Mandal,et al.  A CMOS beta multiplier voltage reference with improved temperature performance and silicon tunability , 2004, 17th International Conference on VLSI Design. Proceedings..

[83]  Ken Sasaki,et al.  Intra-body data transmission for the personal area network , 2005 .

[84]  Teresa H. Y. Meng,et al.  HermesB: A Continuous Neural Recording System for Freely Behaving Primates , 2007, IEEE Transactions on Biomedical Engineering.

[85]  A. Priori,et al.  An electronic device for artefact suppression in human local field potential recordings during deep brain stimulation , 2007, Journal of neural engineering.

[86]  Woradorn Wattanapanitch,et al.  An ultra-low-power neural recording amplifier and its use in adaptively-biased multi-amplifier arrays , 2007 .

[87]  Kensall D. Wise,et al.  A 256-Site 3D CMOS Microelectrode Array for Multipoint Stimulation and Recording in the Central Nervous System , 2001 .

[88]  G. Palumbo,et al.  A low-voltage low-power voltage reference based on subthreshold MOSFETs , 2003, IEEE J. Solid State Circuits.

[89]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[90]  W.M.C. Sansen,et al.  A micropower low-noise monolithic instrumentation amplifier for medical purposes , 1987 .

[91]  Reid R. Harrison,et al.  A low-power integrated circuit for adaptive detection of action potentials in noisy signals , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[92]  Rizwan Bashirullah,et al.  A 20µW neural recording tag with supply-current-modulated AFE in 0.13µm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[93]  R.R. Harrison,et al.  A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System , 2006, IEEE Journal of Solid-State Circuits.

[94]  Yevgeny Perelman,et al.  Analog frontend for multichannel neuronal recording system with spike and LFP separation , 2006, Journal of Neuroscience Methods.

[95]  R. Oostenveld,et al.  A MEMS-based flexible multichannel ECoG-electrode array , 2009, Journal of neural engineering.

[96]  Y. Amemiya,et al.  A 300 nW, 15 ppm/$^{\circ}$C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs , 2009, IEEE Journal of Solid-State Circuits.

[97]  Yong Lian,et al.  A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip , 2009, IEEE Journal of Solid-State Circuits.

[98]  K D Wise,et al.  An Ultra Compact Integrated Front End for Wireless Neural Recording Microsystems , 2010, Journal of Microelectromechanical Systems.

[99]  Zbigniew Stojek,et al.  The Electrical Double Layer and Its Structure , 2010 .

[100]  J. Thomas Mortimer,et al.  Intramuscular electrical stimulation: Tissue damage , 2006, Annals of Biomedical Engineering.

[101]  Moo Sung Chae,et al.  A 220nW neural amplifier for multi-channel neural recording systems , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[102]  Bernhard Graimann,et al.  Toward a direct brain interface based on human subdural recordings and wavelet-packet analysis , 2004, IEEE Transactions on Biomedical Engineering.