The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets

Constraining the Birthplace of Asteroids Many primitive meteorites originating from the asteroid belt once contained abundant water that is now stored as OH in hydrated minerals. Alexander et al. (p. 721, published online 12 July) estimated the hydrogen isotopic compositions in 86 samples of primitive meteorites that fell in Antarctica and compared the results to those of comets and Saturn's moon, Enceladus. Water in primitive meteorites was less deuteriumrich than that in comets and Enceladus, implying that, in contradiction to recent models of the dynamical evolution of the solar system, the parent bodies of primitive meteorites cannot have formed in the same region as comets. The results also suggest that comets were not the principal source of Earth's water. Hydrogen isotopic analysis of primitive meteorites implicates asteroids as early sources of Earth’s water. Determining the source(s) of hydrogen, carbon, and nitrogen accreted by Earth is important for understanding the origins of water and life and for constraining dynamical processes that operated during planet formation. Chondritic meteorites are asteroidal fragments that retain records of the first few million years of solar system history. The deuterium/hydrogen (D/H) values of water in carbonaceous chondrites are distinct from those in comets and Saturn’s moon Enceladus, implying that they formed in a different region of the solar system, contrary to predictions of recent dynamical models. The D/H values of water in carbonaceous chondrites also argue against an influx of water ice from the outer solar system, which has been invoked to explain the nonsolar oxygen isotopic composition of the inner solar system. The bulk hydrogen and nitrogen isotopic compositions of CI chondrites suggest that they were the principal source of Earth’s volatiles.

[1]  P. Buseck,et al.  Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites , 2007 .

[2]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[3]  Andrew Steele,et al.  Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft , 2006, Science.

[4]  T. Hiroi,et al.  Characterization of unusual CI/CM/CR meteorites from reflectance spectroscopy , 1997 .

[5]  A. Tsuchiyama,et al.  Chondrulelike Objects in Short-Period Comet 81P/Wild 2 , 2008, Science.

[6]  R. Clayton,et al.  The Kaidun chondrite breccia: Petrology, oxygen isotopes, and trace element abundances , 2009 .

[7]  J. Kerridge Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. , 1985, Geochimica et cosmochimica acta.

[8]  R. Wiens,et al.  A 15N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples , 2011, Science.

[9]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[10]  J. Böhlke,et al.  Reporting of nitrogen-isotope abundances (Technical Report) , 1992 .

[11]  Harold F. Levison,et al.  The formation of the Kuiper belt by the outward transport of bodies during Neptune's migration , 2003, Nature.

[12]  R. Walker,et al.  Osmium isotopic compositions of mantle xenoliths: A global perspective , 2001 .

[13]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[14]  M. Lipschutz,et al.  Thermally metamorphosed carbonaceous chondrites from data for thermally mobile trace elements , 1998 .

[15]  J. Wasson,et al.  Oxygen isotopes in magnetite and fayalite in CV chondrites Kaba and Mokoia , 2000 .

[16]  T. Owen,et al.  A determination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). , 1998, Science.

[17]  G. Cody,et al.  Organic thermometry for chondritic parent bodies , 2008 .

[18]  P. Bland,et al.  Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration , 2009 .

[19]  J. Eiler,et al.  Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites , 2007 .

[20]  P. Buseck,et al.  Aqueous alteration in the Kaba CV3 carbonaceous chondrite , 1989 .

[21]  N. Kaib,et al.  Building the terrestrial planets: Constrained accretion in the inner Solar System , 2009, 0905.3750.

[22]  S. Messenger Identification of molecular-cloud material in interplanetary dust particles , 2000, Nature.

[23]  R. C. Wiens,et al.  The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind , 2011, Science.

[24]  M. Kimura,et al.  Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites , 1998 .

[25]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[26]  J. P. Greenwood,et al.  Oxygen isotopes in R-chondrite magnetite and olivine: links between R chondrites and ordinary chondrites , 2000 .

[27]  J. Wasson,et al.  Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites , 1998, Nature.

[28]  T. Tyliszczak,et al.  Quantitative organic and light‐element analysis of comet 81P/Wild 2 particles using C‐, N‐, and O‐μ‐XANES , 2008 .

[29]  W. Ip,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[30]  F. Robert Water and organic matter D/H ratios in the solar system: a record of an early irradiation of the nebula? , 2002 .

[31]  P. Spurný,et al.  The orbit and atmospheric trajectory of the Orgueil meteorite from historical records , 2006 .

[32]  A. Westphal,et al.  Carbon investigation of two Stardust particles: A TEM, NanoSIMS, and XANES study , 2008 .

[33]  P. Bland,et al.  Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. Degree, nature and settings of aqueous alteration , 2011 .

[34]  Young,et al.  Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals , 1999, Science.

[35]  Bernard Marty The origins and concentrations of water, carbon, nitrogen and noble gases on Earth , 2012 .

[36]  E. Peltzer,et al.  α-Hydroxycarboxylic acids in the Murchison meteorite , 1978, Nature.

[37]  I. Kaplan,et al.  Endogenous Carbon in Carbonaceous Meteorites , 1970, Science.

[38]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[39]  D. Lis,et al.  Radio wavelength molecular observations of comets C/1999 T1 (McNaught-Hartley), C/2001 A2 (LINEAR), C/2000 WM1 (LINEAR) and 153P/Ikeya-Zhang , 2006 .

[40]  Scott Messenger,et al.  Formation and Processing of Amorphous Silicates in Primitive Carbonaceous Chondrites and Cometary Dust , 2012 .

[41]  C. Vastel,et al.  A study of deuterated water in the low-mass protostar IRAS 16293-2422 , 2012, 1201.1785.

[42]  R. Wieler,et al.  Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth , 2011 .

[43]  D. Heymann,et al.  Noble gases in carbonaceous chondrites , 1970 .

[44]  Alwyn Wootten,et al.  Deuterated Water in Comet C/1996 B2 (Hyakutake) and Its Implications for the Origin of Comets☆ , 1998 .

[45]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[46]  F. Nimmo,et al.  Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets , 2009 .

[47]  R. Clayton,et al.  Oxygen isotopes in separated components of CI and CM meteorites , 1994 .

[48]  F. Robert,et al.  The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites☆ , 1982 .

[49]  S. Taylor,et al.  Fine‐grained precursors dominate the micrometeorite flux , 2012 .

[50]  E. Dishoeck,et al.  Water deuterium fractionation in the low-mass protostar NGC1333-IRAS2A , 2011, 1101.3880.

[51]  M. Zolensky,et al.  Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon , 1996 .

[52]  D. Jewitt,et al.  THE ACTIVE ASTEROIDS , 2011, 1112.5220.

[53]  G. Cody,et al.  NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups , 2005 .

[54]  H. Böhnhardt,et al.  A SENSITIVE SEARCH FOR DEUTERATED WATER IN COMET 8P/TUTTLE , 2008 .

[55]  P. Beck,et al.  Hydrogen isotopic composition of the water in CR chondrites , 2010 .

[56]  L. Bonal,et al.  Highly 15N-enriched chondritic clasts in the CB/CH-like meteorite Isheyevo , 2010 .

[57]  D. Mckay,et al.  Unusual olivine and pyroxene composition in interplanetary dust and unequilibrated ordinary chondrites , 1989, Nature.

[58]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[59]  E. Gaidos,et al.  Differentiation of planetesimals and the thermal consequences of melt migration , 2011, 1101.4165.

[60]  E. Young Time-dependent oxygen isotopic effects of CO self shielding across the solar protoplanetary disk , 2007 .

[61]  E. Jehin,et al.  The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR) , 2008, 0809.4300.

[62]  S. Itoh,et al.  Remnants of the Early Solar System Water Enriched in Heavy Oxygen Isotopes , 2007, Science.

[63]  J. Wasson,et al.  Microscale oxygen isotopic exchange and magnetite formation in the Ningqiang anomalous carbonaceous chondrite , 2003 .

[64]  David J. Stevenson,et al.  Rapid formation of Jupiter by diffusive redistribution of water vapor in the solar nebula , 1988 .

[65]  J. Rouzaud,et al.  Pre-Accretion Heterogeneity of Organic Matter in Types 1 and 2 Chondrites , 2011 .

[66]  A. Guilbert-Lepoutre,et al.  LIMITS TO ICE ON ASTEROIDS (24) THEMIS AND (65) CYBELE , 2011, 1111.3292.

[67]  F. Robert,et al.  The hydrogen isotope composition of seawater and the global water cycle , 1998 .

[68]  B. Dubrulle,et al.  Structure and Transport in the Solar Nebula from Constraints on Deuterium Enrichment and Giant Planets Formation , 1999 .

[69]  C. Pillinger,et al.  The carbon and oxygen isotopic composition of meteoritic carbonates , 1988 .

[70]  Rhonda M. Stroud,et al.  Origin and Evolution of Prebiotic Organic Matter As Inferred from the Tagish Lake Meteorite , 2011, Science.

[71]  P. Hoppe,et al.  Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites , 2006, Science.

[72]  M. Chi,et al.  Comparison of Comet 81P/Wild 2 Dust with Interplanetary Dust from Comets , 2008, Science.

[73]  L. Bonal,et al.  Chondritic lithic clasts in the CB/CH-like meteorite Isheyevo: Fragments of previously unsampled parent bodies , 2010 .

[74]  J. Lyons,et al.  CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula , 2005, Nature.

[75]  Larry R. Nittler,et al.  Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy , 2007 .

[76]  P. H. Warren,et al.  Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites , 2011 .

[77]  A. Brearley Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components , 1993 .

[78]  Michael E. Zolensky,et al.  The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid , 2001, Science.

[79]  G. Cody,et al.  Deuterium enrichments in chondritic macromolecular material—Implications for the origin and evolution of organics, water and asteroids , 2010 .

[80]  A. Kearsley,et al.  The labelling of meteoritic organic material using osmium tetroxide vapour impregnation , 2007 .

[81]  Hisayoshi Yurimoto,et al.  Molecular Cloud Origin for the Oxygen Isotope Heterogeneity in the Solar System , 2004, Science.

[82]  L. Leshin,et al.  Origin of magnetite in oxidized CV chondrites: in situ measurement of oxygen isotope compositions of Allende magnetite and olivine. , 1997, Earth and planetary science letters.

[83]  H. Leroux,et al.  Pristine extraterrestrial material with unprecedented nitrogen isotopic variation , 2009, Proceedings of the National Academy of Sciences.

[84]  J. Geiss,et al.  Abundances of Deuterium and Helium-3 in the Protosolar Cloud , 1998 .

[85]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[86]  F. Robert,et al.  Extraterrestrial water in micrometeorites and cosmic spherules from Antarctica: An ion microprobe study , 1999 .

[87]  M. Zolensky,et al.  Petrographic, Chemical and Spectroscopic Data on Thermally Metamorphosed Carbonaceous Chondrites , 2002 .

[88]  B. Dubrulle,et al.  Constraints on the Formation of Comets from D/H Ratios Measured in H2O and HCN , 2000 .

[89]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[90]  F. R. Krueger,et al.  The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1 , 1987, Nature.

[91]  I. Gilmour,et al.  HYDROGEN ISOTOPIC COMPOSITION OF THE TAGISH LAKE METEORITE: COMPARISON WITH , 2001 .

[92]  E. Tedesco,et al.  Compositional Structure of the Asteroid Belt , 1982, Science.

[93]  M. Dyar,et al.  The LaPaz Icefield 04840 meteorite : Mineralogy, metamorphism, and origin of an amphibole-and biotite-bearing R chondrite , 2008 .

[94]  D. J. Barber,et al.  The microstructure of Semarkona and Bishunpur , 1989 .

[95]  L. Merlivat,et al.  Hydrogen isotope abundances in the solar system. Part I: Unequilibrated chondrites , 1987 .

[96]  M. Zolensky,et al.  The Kaidun Microbreccia Meteorite: A Harvest from the Inner and Outer Asteroid Belt , 2003 .

[97]  M. Chi,et al.  Comparing Wild 2 particles to chondrites and IDPs , 2008 .

[98]  J. Seewald,et al.  Oxygen and hydrogen isotope fractionation in serpentine–water and talc–water systems from 250 to 450 °C, 50 MPa , 2009 .