Catalysis of Gold Nanoparticles Deposited on Metal Oxides

Gold in bulk is chemically inert and has often been regarded to be poorly active as a catalyst. However, when gold is small enough—with particle diameters below 10 nm—it turns out to be surprisingly active for many reactions, such as CO oxidation and propylene epoxidation. This is especially so at low temperatures. Here, a summary of the catalysis of Au nanoparticles deposited on base metal oxides is presented. The catalytic performance of Au is defined by three major factors: contact structure, support selection, and particle size, the first of which being the most important because the perimeter interfaces around Au particles act as the site for reaction.

[1]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[2]  Martin Muhler,et al.  CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction , 2001 .

[3]  H. Wan,et al.  Supported Au catalysts prepared from Au phosphine complexes and As-precipitated metal hydroxides: Characterization and low-temperature CO oxidation , 1997 .

[4]  T. Akita,et al.  Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation , 2001 .

[5]  J. E. Smith,et al.  An investigation of the activity of coprecipitated gold catalysts for methane oxidation , 1994 .

[6]  M. Haruta,et al.  Influence of dry operating conditions: observation of oscillations and low temperature CO oxidation over Co3O4 and Au/Co3O4 catalysts , 1994 .

[7]  M. Haruta,et al.  Reduction of nitrogen monoxide with propene over Au/Al2O3 mixed mechanically with Mn2O3 , 1998 .

[8]  S. Galvagno,et al.  FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature , 1997 .

[9]  Gianmario Martra,et al.  Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phase oxidation , 2000 .

[10]  A. Miyamoto,et al.  Selective oxidation of propylene over gold deposited on titanium-based oxides , 1998 .

[11]  Hiroaki Sakurai,et al.  Carbon dioxide and carbon monoxide hydrogenation over gold supported on titanium, iron, and zinc oxides , 1995 .

[12]  V. Idakiev,et al.  Low-temperature water-gas shift reaction over Au/α-Fe2O3 , 1996 .

[13]  M. Haruta,et al.  Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)2 catalyst , 1999 .

[14]  J. Schwank Catalytic gold , 1983 .

[15]  David Thompson,et al.  Gold-catalysed oxidation of carbon monoxide , 2000 .

[16]  T. Akita,et al.  Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures , 2001 .

[17]  M. Haruta,et al.  Analytical high-resolution TEM study of supported gold catalysts: orientation relationship between Au particles and TiO2 supports. , 2000, Journal of electron microscopy.

[18]  M. Haruta,et al.  Preparation of Highly Dispersed Gold on Titanium and Magnesium Oxide , 1991 .

[19]  T. Akita,et al.  Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti-MCM-41 , 2001 .

[20]  Z. Hao,et al.  Mechanism of Gold Activation in Supported Gold Catalysts for CO Oxidation , 2000 .

[21]  M. Haruta,et al.  Structural analysis of Au/Mg(OH)2 during deactivation by Debye function analysis , 1996 .

[22]  D. Y. Cha,et al.  Surface reactivity of supported gold: I. Oxygen transfer between CO and CO2 , 1970 .

[23]  A. I. Kozlov,et al.  Active Oxygen Species and Mechanism for Low-Temperature CO Oxidation Reaction on a TiO2-Supported Au Catalyst Prepared from Au(PPh3)(NO3) and As-Precipitated Titanium Hydroxide , 1999 .

[24]  I. Langmuir THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. , 1918 .

[25]  Toshio Hayashi,et al.  Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen , 1998 .

[26]  Masatake Haruta,et al.  Moisture effect on CO oxidation over Au/TiO2 catalyst , 2001 .

[27]  M. Haruta,et al.  EPR Study of CO and O2 Interaction with Supported Au Catalysts , 2001 .

[28]  Yoshikazu Usami,et al.  Catalytic methanol decomposition at low temperatures over palladium supported on metal oxides , 1998 .

[29]  S. C. Parker,et al.  The kinetics of CO oxidation by adsorbed oxygen on well‐defined gold particles on TiO2(110) , 1999 .

[30]  K. Domen,et al.  Selective Hydrogenation of Acetylene over Au/Al2O3 Catalyst , 2000 .

[31]  G. Hutchings,et al.  Hydrochlorination of acetylene using carbon-supported gold catalysts: A study of catalyst reactivation , 1991 .

[32]  M. Haruta,et al.  XAFS studies of ultra-fine gold catalysts supported on hematite prepared from coprecipitated precursors , 1989 .

[33]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[34]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[35]  M. Vannice,et al.  CO and O2 adsorption on model Au-TiO2 systems , 1997 .

[36]  M. Iwamoto Air pollution abatement through heterogeneous catalysis , 2000 .

[37]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[38]  P. Claus,et al.  Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale: Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups , 2000 .

[39]  M. Haruta,et al.  A Kinetic and Adsorption Study of CO Oxidation over Unsupported Fine Gold Powder and over Gold Supported on Titanium Dioxide , 1999 .

[40]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[41]  T. Shido,et al.  TAP study on CO oxidation on a highly active Au/Ti (OH)4* catalyst , 2001 .

[42]  J. Nørskov,et al.  Making gold less noble , 2000 .

[43]  T. Ishihara,et al.  Selective hydrogen cyanide synthesis from CFC12 (CCl2F2) and ammonia over metal catalysts supported on LaF3 and activated charcoal , 1992 .

[44]  M. Haruta,et al.  The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation , 1997 .

[45]  R. P. Andres,et al.  Characterization of Gold–Titania Catalysts via Oxidation of Propylene to Propylene Oxide , 2000 .

[46]  Y. Bando,et al.  Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO , 1995 .

[47]  W. J. Witteman,et al.  Catalyst enhanced high power radio frequency excited CO2 slab laser , 2000 .

[48]  S. Galvagno,et al.  Mössbauer characterisation of gold/iron oxide catalysts , 1997 .

[49]  L. Guczi,et al.  Gold nanoparticles: effect of treatment on structure and catalytic activity of Au/Fe2O3 catalyst prepared by co‐precipitation , 2000 .

[50]  H. Gasteiger,et al.  Kinetics of the Selective Low-Temperature Oxidation of CO in H2-Rich Gas over Au/α-Fe2O3 , 1999 .

[51]  B. Gates,et al.  Size-dependent catalytic activity of supported metal clusters , 1994, Nature.

[52]  M. Haruta,et al.  Selective oxidation of CO in hydrogen over gold supported on manganese oxides , 1997 .

[53]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[54]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[55]  N. Saliba,et al.  Adsorption of oxygen on Au(111) by exposure to ozone , 1998 .

[56]  Pio Forzatti,et al.  Present status and perspectives in de-NOx SCR catalysis , 2001 .

[57]  P. Claus,et al.  Gold catalysts for the partial hydrogenation of acrolein , 2000 .

[58]  M. Haruta,et al.  The reactivities of dimethylgold(III)β-diketone on the surface of TiO2 : A novel preparation method for Au catalysts , 1997 .

[59]  B. Delmon,et al.  Thin-films of Supported Gold Catalysts for Co Detection , 1990 .

[60]  G. Bond,et al.  Catalysis by metals and alloys , 1995 .

[61]  M. Haruta,et al.  197Au Mössbauer study of nano-sized gold catalysts supported on Mg(OH)2 and TiO2 , 2000 .

[62]  Toshio Hayashi,et al.  Vapor-Phase Selective Oxidation of Aliphatic Hydrocarbons over Gold Deposited on Mesoporous Titanium Silicates in the Co-Presence of Oxygen and Hydrogen , 1999 .

[63]  C. Campbell,et al.  Adsorption of oxygen and hydrogen on Au(110)-(1 × 2) , 1986 .

[64]  S. Galvagno,et al.  Chemical reactivity of supported gold: IV. Reduction of NO by H2 , 1978 .

[65]  A. Sánchez,et al.  Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: Each atom counts , 1999 .

[66]  M. Haruta,et al.  Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2 , 1998 .

[67]  F. Porta,et al.  Selective liquid phase oxidation using gold catalysts , 2000 .

[68]  S. Yagnik,et al.  CO/sub 2/ laser performance with a distributed gold catalyst , 1989 .

[69]  M. Haruta,et al.  The Relationship between the Structure and Activity of Nanometer Size Gold When Supported on Mg(OH)2 , 1998 .