Shared-memory parallelization of a local correlation multi-reference CI program

Abstract We present a shared-memory parallelization of our open-source, local correlation multi-reference framework, TigerCI. Benchmarks of the total parallel speedup show a reasonable scaling for typical modern computing system setups. The efficient use of available computing resources will extend simulations on this high level of theory into a new size regime. We demonstrate our framework using local-correlation multireference computations of alkyl-substituted dioxirane and solvated methyl nitrene as examples.

[1]  Jon Baker,et al.  Recent developments in the PQS program , 2012 .

[2]  Timothy R Newhouse,et al.  Enhanced reactivity in dioxirane C-H oxidations via strain release: a computational and experimental study. , 2013, The Journal of organic chemistry.

[3]  Emily A Carter,et al.  Cholesky decomposition within local multireference singles and doubles configuration interaction. , 2010, The Journal of chemical physics.

[4]  E. Carter,et al.  Size extensive modification of local multireference configuration interaction. , 2004, The Journal of chemical physics.

[5]  Luo Qi,et al.  Parallel and Distributed Computing and Networks , 2011 .

[6]  Włodzisław Duch,et al.  Symmetric group approach to configuration interaction methods , 1985 .

[7]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[8]  Tomasz Janowski,et al.  Efficient Parallel Implementation of the CCSD External Exchange Operator and the Perturbative Triples (T) Energy Calculation. , 2008, Journal of chemical theory and computation.

[9]  Emily A. Carter,et al.  Local correlation in the virtual space in multireference singles and doubles configuration interaction , 2003 .

[10]  Roland Lindh,et al.  Linear scaling multireference singles and doubles configuration interaction. , 2008, The Journal of chemical physics.

[11]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[12]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[13]  Chi-Ming Che,et al.  Dioxiranes generated in situ from pyruvates and oxone as environmentally friendly oxidizing agents for disinfection. , 2006, Environmental Science and Technology.

[14]  Thomas Müller,et al.  Columbus—a program system for advanced multireference theory calculations , 2011 .

[15]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[16]  Claudia Leopold,et al.  Parallel and distributed computing , 2000 .

[17]  Kiyoshi Tanaka,et al.  A graphical symmetric group approach for a spin adapted full configuration interaction: partitioning of a configuration graph into sets of closed-shell and open-shell graphs , 2007 .

[18]  Jonas Feldt,et al.  Atomdroid: A Computational Chemistry Tool for Mobile Platforms , 2012, J. Chem. Inf. Model..

[19]  H. Bernhard Schlegel,et al.  Electronic structure and reactivity of dioxirane and carbonyl oxide , 1992 .

[20]  Włodzisław Duch,et al.  A multireference direct CI program based on the symmetric group graphical approach , 1987 .

[21]  Caterina Fusco,et al.  Methyl(trifluoro‐methyl)dioxirane , 2005 .

[22]  Jarek Nieplocha,et al.  Advances, Applications and Performance of the Global Arrays Shared Memory Programming Toolkit , 2006, Int. J. High Perform. Comput. Appl..

[23]  Michael W. Schmidt,et al.  Solvent-induced shifts in electronic spectra of uracil. , 2011, The journal of physical chemistry. A.

[24]  Andrey Asadchev,et al.  Fast and Flexible Coupled Cluster Implementation. , 2013, Journal of chemical theory and computation.

[25]  S M Mandel,et al.  Photolysis of alpha-azidoacetophenones: trapping of triplet alkyl nitrenes in solution. , 2001, Organic letters.

[26]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[27]  Maurice Goeldner,et al.  Recent Trends in Photoaffinity Labeling , 1995 .

[29]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[30]  Eileen P. Clifford,et al.  Photoelectron spectroscopy of the CH3N− ion , 1999 .

[31]  Emily A Carter,et al.  Valence Excited States in Large Molecules via Local Multireference Singles and Doubles Configuration Interaction. , 2011, Journal of chemical theory and computation.

[32]  Dimitrios G Liakos,et al.  Weak Molecular Interactions Studied with Parallel Implementations of the Local Pair Natural Orbital Coupled Pair and Coupled Cluster Methods. , 2011, Journal of chemical theory and computation.

[33]  E. Carter,et al.  Local weak-pairs pseudospectral multireference configuration interaction , 2002 .

[34]  Włodzisław Duch,et al.  Coupling constants in the direct configuration interaction method , 1979 .

[35]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[36]  Hans-Joachim Werner,et al.  A new internally contracted multi-reference configuration interaction method. , 2011, The Journal of chemical physics.

[37]  Joseph Moses Juran,et al.  Quality-control handbook , 1951 .

[38]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[41]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[42]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[43]  Mark S. Gordon,et al.  Chapter 41 – Advances in electronic structure theory: GAMESS a decade later , 2005 .

[44]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[45]  Emily A Carter,et al.  Approximately size extensive local Multireference Singles and Doubles Configuration Interaction. , 2012, Physical chemistry chemical physics : PCCP.

[46]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[47]  Roland H. Hertwig,et al.  On the parameterization of the local correlation functional. What is Becke-3-LYP? , 1997 .

[48]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[49]  Robert J. Harrison,et al.  A massively parallel multireference configuration interaction program: The parallel COLUMBUS program , 1997 .

[50]  Edoardo Aprà,et al.  Parallel Implementation of Multireference Coupled-Cluster Theories Based on the Reference-Level Parallelism. , 2012, Journal of chemical theory and computation.

[51]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[52]  Emily A. Carter,et al.  Multi-reference weak pairs local configuration interaction: efficient calculations of bond breaking , 2001 .

[53]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[54]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[55]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[56]  P. T. Gallagher,et al.  Developments in Arylnitrene Chemistry: Syntheses and Mechanisms [New synthetic methods (31)] , 1979 .

[57]  W. C. Lineberger,et al.  The synergy between qualitative theory, quantitative calculations, and direct experiments in understanding, calculating, and measuring the energy differences between the lowest singlet and triplet states of organic diradicals. , 2011, Physical chemistry chemical physics : PCCP.

[58]  Eric F. V. Scriven,et al.  Azides and nitrenes : reactivity and utility , 1984 .

[59]  Peter Pulay,et al.  Parallel Calculation of Coupled Cluster Singles and Doubles Wave Functions Using Array Files. , 2007, Journal of chemical theory and computation.