An open and closed case for all polymerases.

[1]  T. Steitz,et al.  Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP , 2020, Nature.

[2]  Gabriel Waksman,et al.  Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation , 1998, The EMBO journal.

[3]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[4]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[5]  James R. Kiefer,et al.  Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal , 1998, Nature.

[6]  Samuel H. Wilson,et al.  Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. , 1997, Biochemistry.

[7]  T. Steitz,et al.  Crystal Structure of a pol α Family Replication DNA Polymerase from Bacteriophage RB69 , 1997, Cell.

[8]  Samuel H. Wilson,et al.  A minor groove binding track in reverse transcriptase , 1997, Nature Structural Biology.

[9]  L. Beese,et al.  Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 A resolution. , 1997, Structure.

[10]  Thomas A. Steitz,et al.  Structure of Taq polymerase with DNA at the polymerase active site , 1996, Nature.

[11]  M. Nayal,et al.  Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[12]  W A Hendrickson,et al.  Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase. , 1995, Structure.

[13]  Dae-Sil Lee,et al.  Crystal structure of Thermus aquaticus DNA polymerase , 1995, Nature.

[14]  Yvonne Jones,et al.  Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors , 1995, Nature Structural Biology.

[15]  Yvonne Jones,et al.  High resolution structures of HIV-1 RT from four RT–inhibitor complexes , 1995, Nature Structural Biology.

[16]  K A Johnson,et al.  Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors , 1995, Science.

[17]  Samuel H. Wilson,et al.  Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. , 1994, Science.

[18]  Samuel H. Wilson,et al.  Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. , 1994, Science.

[19]  A. D. Clark,et al.  Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Steitz,et al.  Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. , 1992, Science.

[21]  K. Johnson,et al.  An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. , 1991, Biochemistry.

[22]  T. Steitz,et al.  Structural basis for the 3′‐5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. , 1991, The EMBO journal.

[23]  P Argos,et al.  An attempt to unify the structure of polymerases. , 1990, Protein engineering.