NiftyPAD - Novel Python Package for Quantitative Analysis of Dynamic PET Data

[1]  A. Lammertsma,et al.  [11C]PIB amyloid quantification: effect of reference region selection , 2020, EJNMMI Research.

[2]  W. M. van der Flier,et al.  Repeatability of parametric methods for [18F]florbetapir imaging in Alzheimer’s disease and healthy controls: A test–retest study , 2020, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[3]  Mark E. Schmidt,et al.  Quantitative amyloid PET in Alzheimer's disease: the AMYPAD prognostic and natural history study , 2020, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[4]  W. Jagust,et al.  Detecting earlier stages of amyloid deposition using PET in cognitively normal elderly adults , 2020, Neurology.

[5]  Granville James Matheson,et al.  kinfitr: Reproducible PET Pharmacokinetic Modelling in R , 2019 .

[6]  R. P. Maguire,et al.  Validation of Parametric Methods for [11C]UCB-J PET Imaging Using Subcortical White Matter as Reference Tissue , 2019, Molecular Imaging and Biology.

[7]  J. Berkhof,et al.  Optimized dual-time-window protocols for quantitative [18F]flutemetamol and [18F]florbetaben PET studies , 2019, EJNMMI Research.

[8]  L. Nummenmaa,et al.  Magia: Robust Automated Image Processing and Kinetic Modeling Toolbox for PET Neuroinformatics , 2018, bioRxiv.

[9]  L. Ferrucci THE BALTIMORE LONGITUDINAL STUDY ON AGING: 60 YEARS OLD AND BETTER THAN EVER , 2018, Innovation in Aging.

[10]  Alan C. Evans,et al.  APPIAN: Automated Pipeline for PET Image Analysis , 2018, Front. Neuroinform..

[11]  Ninon Burgos,et al.  Reduced acquisition time PET pharmacokinetic modelling using simultaneous ASL–MRI: proof of concept , 2018, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  Daniel S. Marcus,et al.  OASIS-3: LONGITUDINAL NEUROIMAGING, CLINICAL, AND COGNITIVE DATASET FOR NORMAL AGING AND ALZHEIMER’S DISEASE , 2018, Alzheimer's & Dementia.

[13]  Karl Thurnhofer-Hemsi,et al.  QModeling: a Multiplatform, Easy-to-Use and Open-Source Toolbox for PET Kinetic Analysis , 2018, Neuroinformatics.

[14]  Ronald Boellaard,et al.  Quantification of [18F]florbetapir: A test–retest tracer kinetic modelling study , 2018, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  Osama Sabri,et al.  Validation of Noninvasive Tracer Kinetic Analysis of 18F-Florbetaben PET Using a Dual–Time-Window Acquisition Protocol , 2017, The Journal of Nuclear Medicine.

[16]  Davide Poggiali,et al.  A new integrated dual time-point amyloid PET/MRI data analysis method , 2017, European Journal of Nuclear Medicine and Molecular Imaging.

[17]  A. Lammertsma,et al.  Forward to the Past: The Case for Quantitative PET Imaging , 2017, The Journal of Nuclear Medicine.

[18]  R. Boellaard,et al.  Parametric Binding Images of the TSPO Ligand 18F-DPA-714 , 2016, The Journal of Nuclear Medicine.

[19]  Roger N. Gunn,et al.  Molecular Imaging And Kinetic Analysis Toolbox (MIAKAT) - A Quantitative Software Package for the Analysis of PET Neuroimaging Data , 2016 .

[20]  Ann D. Cohen,et al.  Early detection of Alzheimer's disease using PiB and FDG PET , 2014, Neurobiology of Disease.

[21]  Jieqing Jiao,et al.  Spatio-temporal pharmacokinetic model based registration of 4D PET neuroimaging data , 2014, NeuroImage.

[22]  Rik Ossenkoppele,et al.  Longitudinal Amyloid Imaging Using 11C-PiB: Methodologic Considerations , 2013, The Journal of Nuclear Medicine.

[23]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[24]  Frederik Barkhof,et al.  Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[25]  R. Boellaard,et al.  Test-retest variability of quantitative [11C]PIB studies in Alzheimer’s disease , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[26]  Ronald Boellaard,et al.  PPET: A software tool for kinetic and parametric analyses of dynamic PET studies , 2006, NeuroImage.

[27]  Ronald Boellaard,et al.  Optimization algorithms and weighting factors for analysis of dynamic PET studies , 2006, Physics in medicine and biology.

[28]  Jeih-San Liow,et al.  Linearized Reference Tissue Parametric Imaging Methods: Application to [11C]DASB Positron Emission Tomography Studies of the Serotonin Transporter in Human Brain , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[29]  Richard E Carson,et al.  Noise Reduction in the Simplified Reference Tissue Model for Neuroreceptor Functional Imaging , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  R F Muzic,et al.  COMKAT: compartment model kinetic analysis tool. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  Vincent J. Cunningham,et al.  Parametric Imaging of Ligand-Receptor Binding in PET Using a Simplified Reference Region Model , 1997, NeuroImage.

[32]  A. Lammertsma,et al.  Simplified Reference Tissue Model for PET Receptor Studies , 1996, NeuroImage.

[33]  N. Volkow,et al.  Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET Data , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[34]  D Feng,et al.  A computer simulation study on the input function sampling schedules in tracer kinetic modeling with positron emission tomography (PET). , 1994, Computer methods and programs in biomedicine.

[35]  S. Son,et al.  Early-Phase 18F-Florbetaben PET as an Alternative Modality for 18F-FDG PET. , 2019, Clinical nuclear medicine.