Quantum noise of a mode-locked laser

The master equation of mode locking written in operator notation is supplemented with noise-source terms that conserve commutator brackets. The noise sources are associated with the reservoirs responsible for loss and gain. The output of a mode-locked laser with the least possible quantum noise is determined.

[1]  Hermann A. Haus,et al.  Quantum noise of an injection-locked laser oscillator , 1984 .

[2]  Hermann A. Haus,et al.  Quantum theory of soliton squeezing: a linearized approach , 1990 .

[3]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[4]  Jean-Luc Vey,et al.  Semiclassical description of noise and generation of amplitude squeezed states with vertical cavity surface-emitting semiconductor lasers , 1997 .

[5]  Quantum fluctuations and formation of coherency in lasers , 1988 .

[6]  Deutsch,et al.  Two-photon bound states: The diphoton bullet in dispersive self-focusing media. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[7]  James G. Fujimoto,et al.  Dispersion-managed mode locking , 1999 .

[8]  Yamamoto,et al.  Commutation relations and laser linewidth. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[9]  H. Haus,et al.  A theory of forced mode locking , 1975, IEEE Journal of Quantum Electronics.

[10]  Hermann A. Haus Steady-state quantum analysis of linear systems , 1970 .

[11]  Hermann A. Haus,et al.  Modulation and filtering control of soliton transmission , 1992 .

[12]  H. Haus,et al.  Continuum generation by perturbation of soliton , 1997 .

[13]  Hermann A. Haus,et al.  Noise of mode-locked lasers , 1993, Optical Society of America Annual Meeting.

[14]  Scully,et al.  Role of pumping statistics in laser dynamics: Quantum Langevin approach. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[15]  Drummond,et al.  Squeezed quantum solitons and Raman noise. , 1991, Physical review letters.

[16]  K L Hall,et al.  Asynchronous phase-modulated optical fiber-ring buffer. , 1998, Optics letters.

[17]  J. Gordon Dispersive perturbations of solitons of the nonlinear Schrödinger equation , 1992 .

[18]  Hagelstein Application of a photon configuration-space model to soliton propagation in a fiber. , 1996, Physical Review A. Atomic, Molecular, and Optical Physics.

[19]  Optical corpuscular theory of semiconductor laser intensity noise and intensity squeezed-light generation , 1997 .

[20]  M. Lewenstein,et al.  Adiabatic expansion for the single-mode laser , 1983 .

[21]  H. Haus,et al.  Soliton squeezing and the continuum , 2000 .

[22]  Machida,et al.  Observation of amplitude squeezing in a constant-current-driven semiconductor laser. , 1987, Physical review letters.

[23]  A. Jann,et al.  Quantum-noise reduction in semiconductor lasers , 1996 .

[24]  H. Haus,et al.  MEASUREMENT OF AMPLITUDE NOISE IN OPTICAL CAVITY MASERS , 1965 .

[25]  H. Haus,et al.  Random walk of coherently amplified solitons in optical fiber transmission. , 1986, Optics letters.

[26]  Shu Namiki,et al.  Observation of nearly quantum-limited timing jitter in an all-fiber ring laser , 1996 .

[27]  H. Haus,et al.  Agreement of stochastic soliton formalism with second-quantized and configuration-space models , 1998 .

[28]  H. Haus,et al.  QUANTUM NOISE IN LINEAR AMPLIFIERS , 1962 .

[29]  Luiz Davidovich,et al.  Sub-Poissonian processes in quantum optics , 1996 .

[30]  Lai,et al.  Quantum theory of solitons in optical fibers. I. Time-dependent Hartree approximation. , 1989, Physical review. A, General physics.

[31]  Lai,et al.  Quantum theory of solitons in optical fibers. II. Exact solution. , 1989, Physical review. A, General physics.

[32]  Kolobov,et al.  Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[33]  A. Hasegawa,et al.  Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect. , 1992, Optics letters.