Test-retest repeatability of ADC in prostate using the multi b-Value VERDICT acquisition

[1]  Daniel C. Alexander,et al.  Avoiding Unnecessary Biopsy after Multiparametric Prostate MRI with VERDICT Analysis: The INNOVATE Study. , 2022, Radiology.

[2]  Adam T Froemming,et al.  Repeatability and Reproducibility Assessment of the Apparent Diffusion Coefficient in the Prostate: A Trial of the ECOG‐ACRIN Research Group (ACRIN 6701) , 2022, Journal of magnetic resonance imaging : JMRI.

[3]  D. Margolis,et al.  Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. , 2019, European urology.

[4]  David Atkinson,et al.  VERDICT MRI for Prostate Cancer: Intracellular Volume Fraction versus Apparent Diffusion Coefficient , 2019, Radiology.

[5]  Prasad R. Shankar,et al.  A Systematic Review of the Existing Prostate Imaging Reporting and Data System Version 2 (PI-RADSv2) Literature and Subset Meta-Analysis of PI-RADSv2 Categories Stratified by Gleason Scores. , 2019, AJR. American journal of roentgenology.

[6]  Thomy Mertzanidou,et al.  VERDICT MRI validation in fresh and fixed prostate specimens using patient‐specific moulds for histological and MR alignment , 2019, NMR in biomedicine.

[7]  N. Obuchowski,et al.  Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE‐MRI derived biomarkers in multicenter oncology trials , 2018, Journal of magnetic resonance imaging : JMRI.

[8]  András Jakab,et al.  Intra-voxel incoherent motion MRI of the living human foetus: technique and test–retest repeatability , 2017, European Radiology Experimental.

[9]  Amy Kaczmarowski,et al.  Optimized b-value selection for the discrimination of prostate cancer grades, including the cribriform pattern, using diffusion weighted imaging , 2017, Journal of medical imaging.

[10]  D. Koh,et al.  Non-Mono-Exponential Analysis of Diffusion-Weighted Imaging for Treatment Monitoring in Prostate Cancer Bone Metastases , 2017, Scientific Reports.

[11]  F. Fennessy,et al.  Multiparametric Magnetic Resonance Imaging of the Prostate , 2017, Investigative radiology.

[12]  M. Parmar,et al.  Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study , 2017, The Lancet.

[13]  David Atkinson,et al.  INNOVATE: A prospective cohort study combining serum and urinary biomarkers with novel diffusion-weighted magnetic resonance imaging for the prediction and characterization of prostate cancer , 2016, BMC Cancer.

[14]  D. Collins,et al.  Repeatability of derived parameters from histograms following non-Gaussian diffusion modelling of diffusion-weighted imaging in a paediatric oncological cohort , 2016, European Radiology.

[15]  B. Delahunt,et al.  The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System , 2015, The American journal of surgical pathology.

[16]  Bachir Taouli,et al.  IVIM diffusion-weighted imaging of the liver at 3.0 T: Comparison with 1.5 T , 2015, European journal of radiology open.

[17]  R. Gabe,et al.  PROMIS — Prostate MR imaging study: A paired validating cohort study evaluating the role of multi-parametric MRI in men with clinical suspicion of prostate cancer☆ , 2015, Contemporary clinical trials.

[18]  Mithat Gönen,et al.  Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment , 2015, Statistical methods in medical research.

[19]  Aytekin Oto,et al.  Apparent diffusion coefficient for prostate cancer imaging: impact of B values. , 2014, AJR. American journal of roentgenology.

[20]  Celia P. Corona-Villalobos,et al.  Agreement and Reproducibility of Apparent Diffusion Coefficient Measurements of Dual-b-Value and Multi-b-Value Diffusion-Weighted Magnetic Resonance Imaging at 1.5 Tesla in Phantom and in Soft Tissues of the Abdomen , 2013, Journal of computer assisted tomography.

[21]  H. Huisman,et al.  Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness. , 2012, Radiology.

[22]  R. Boubertakh,et al.  In vitro and in vivo repeatability of abdominal diffusion-weighted MRI. , 2012, The British journal of radiology.

[23]  Namkug Kim,et al.  Apparent diffusion coefficient: Prostate cancer versus noncancerous tissue according to anatomical region , 2008, Journal of magnetic resonance imaging : JMRI.

[24]  L. Turnbull,et al.  Repeatability of echo-planar-based diffusion measurements of the human prostate at 3 T. , 2007, Magnetic resonance imaging.

[25]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[26]  N. Obuchowski,et al.  Quantitative imaging biomarkers: Effect of sample size and bias on confidence interval coverage , 2018, Statistical methods in medical research.

[27]  H. Huisman,et al.  Computer-extracted Features Can Distinguish Noncancerous Confounding Disease from Prostatic Adenocarcinoma at Multiparametric MR Imaging. , 2016, Radiology.

[28]  D. Margolis,et al.  PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. , 2016, European urology.