Real-time PCR detection and discrimination of the Ceratocystis coerulescens complex and of the fungal species from the Ceratocystis polonica complex validated on pure cultures and bark beetle vectors

Eight Ceratocystis Ellis & Halst. species belonging to the Ceratocystis coerulescens complex are pathogens causing blue- stain on Pinaceae. Three of these species, namely C. polonica, C. laricicola, and C. fujiensis, are particularly aggressive and can cause tree mortality. Although currently absent from the North American landscape, they are considered a significant potential threat to the Canadian boreal forest. As they are difficult to distinguish from native North American species belonging to the C. coerulescens complex, we developed a real-time PCR detection test for each of the three species to detect the equivalent of one fungal spore directly from insect vectors. DNA from at least one species of the C. coerulescens complex was detected on 86% of the beetles (Ips typographus (Linnaeus, 1758) and Ips cembrae (Heer, 1836)), whereas C. polonica DNA was detected on 60% of the I. typographus and C. laricicola DNA was detected on 84% of the I. cembrae. Between 20 and 344 225 spore equivalents were detected on the beetle specimens, and no inhibition effect of DNA extract from environmental samples was observed. These molecular detection tools will allow for rapid and reliable detection of C. polonica, C. laricicola ,o rC. fujiensis, allowing for a rapid implemen- tation of eradication measures in case of introduction into Canada. Resume : Huit especes de Ceratocystis Ellis & Halst. appartenant au complexe Ceratocystis coerulescens sont des agents phyto- pathogenes provoquant le bleuissement du bois chez les Pinaceae. Trois d'entre elles, C. polonica, C. laricicola et C. fujiensis, sont particulierement agressives et peuvent provoquer la mortalite chez les arbres. Bien qu'actuellement absentes du paysage nord-americain, elles sont considerees comme une menace potentielle importante pour la foret boreale canadienne. Etant difficiles adistinguer des especes indigenes appartenant au complexe C. coerulescens, nous avons developpe des tests de detection en PCR en temps reel permettant de detecter aussi peu qu'un equivalent de spores fongiques directement sur des insectes vecteurs. L'ADN d'au moins une espece du complexe C. coerulescens a ete detecte sur 86 % des coleopteres (Ips typographus (Linnaeus, 1758) et Ips cembrae (Heer, 1836)), alors que l'ADN de C. polonica a ete detecte sur 60 % des I. typographus et celui de C. laricicola sur 84 % des I. cembrae. Entre 20 et 344 225 equivalents spores ont ete detectes sur les specimens de coleopteres et aucun effet d'inhibition de l'extrait d'ADN provenant d'echantillons environnementaux n'a ete decele. Ces outils de detection moleculaire permettront une detection rapide et fiable de ces agents pathogenes en cas d'introduction et la mise en place rapide de mesures d'eradication. Mots-cles : Ceratocystis, detection moleculaire, agents pathogenes forestiers exotiques, qPCR, Ips.

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  Filip Pattyn,et al.  Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. , 2013, Clinical chemistry.

[3]  T. Cech,et al.  Biogeographical patterns and determinants of invasion by forest pathogens in Europe. , 2013, The New phytologist.

[4]  M. Garbelotto,et al.  Characterization of fungal communities associated with the bark beetle Ips typographus varies depending on detection method, location, and beetle population levels , 2012, Mycological Progress.

[5]  D. Six,et al.  The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. , 2011, Annual review of entomology.

[6]  M. Quesada,et al.  A Simple and Rapid Method for DNA Isolation from Xylophagous Insects , 2010, International journal of molecular sciences.

[7]  T. Kirisits Fungi isolated from Picea abies infested by the bark beetle Ips typographus in the Białowieża forest in north‐eastern Poland , 2010 .

[8]  S. Kotchoni,et al.  A simplified arthropod genomic-DNA extraction protocol for polymerase chain reaction (PCR)-based specimen identification through barcoding , 2010, Molecular Biology Reports.

[9]  D. Novotný First record of Ceratocystis laricicola (Ascomycota, Ceratocystidaceae) in the Czech Republic , 2010 .

[10]  M. Kacprzyk,et al.  Diversity of ophiostomatoid fungi associated with bark beetles (Coleoptera: Scolytidae) colonizing branches of Norway spruce (Picea abies) in southern Poland , 2009, Biologia.

[11]  J. Fankhauser,et al.  New primers for promising single-copy genes in fungal phylogenetics and systematics , 2009, Persoonia.

[12]  M. Wingfield,et al.  Single sequence repeat markers reflect diversity and geographic barriers in Eurasian populations of the conifer pathogen Ceratocystis polonica , 2009 .

[13]  Wen-Tso Liu,et al.  Quantitative effects of position and type of single mismatch on single base primer extension. , 2009, Journal of microbiological methods.

[14]  J. Stenlid,et al.  Fungi Vectored by the Bark Beetle Ips typographus Following Hibernation Under the Bark of Standing Trees and in the Forest Litter , 2009, Microbial Ecology.

[15]  M. Desprez-Loustau Alien Fungi of Europe , 2009 .

[16]  T. Giraud,et al.  Assessing the performance of single-copy genes for recovering robust phylogenies. , 2008, Systematic biology.

[17]  R. Jankowiak,et al.  Survey of fungal species vectored by Ips cembrae to European larch trees in Raciborskie forests (Poland) , 2007 .

[18]  I. Takahashi,et al.  Virulence of ophiostomatoid fungi associated with the spruce bark beetleIps typographus f.japonicus in Yezo spruce , 2000, Journal of Forest Research.

[19]  T. Kirisits Fungal Associates of European Bark Beetles With Special Emphasis on the Ophiostomatoid Fungi , 2007 .

[20]  Michael Traugott,et al.  Amplification facilitators and multiplex PCR : Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates , 2006 .

[21]  E. Allen,et al.  Forest biosecurity: alien invasive species and vectored organisms , 2006 .

[22]  M. Wingfield,et al.  Phenotypic and DNA sequence data comparisons reveal three discrete species in the Ceratocystis polonica species complex. , 2005, Mycological research.

[23]  M. Garbelotto,et al.  Detection and quantification of Leptographium wageneri, the cause of black-stain root disease, from bark beetles (Coleoptera: Scolytidae) in Northern California using regular and real-time PCR , 2005 .

[24]  R. Jankowiak Fungi associated with Ips typographus on Picea abies in southern Poland and their succession into the phloem and sapwood of beetle-infested trees and logs , 2005 .

[25]  F. Lieutier,et al.  Ophiostomatoid fungi associated with the spruce bark beetle, Ips typographus, in three areas in France , 2004 .

[26]  M. Wingfield,et al.  Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. , 2004, Mycological research.

[27]  R. Rutledge,et al.  Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications. , 2004, Nucleic acids research.

[28]  C. Breuil,et al.  Species level identification of conifer associated Ceratocystis sapstain fungi by PCR-RFLP on a beta-tubulin gene fragment. , 2003, FEMS microbiology letters.

[29]  E. Allen,et al.  Nonindigenous species introductions: a threat to Canada's forests and forest economy1 , 2002 .

[30]  I. Offenthaler,et al.  Xylem sap flow of Norway spruce after inoculation with the blue‐stain fungus Ceratocystis polonica , 2002 .

[31]  D. Bergdahl,et al.  Potential Beetle Vectors of Sirococcus clavigignenti-juglandacearum on Butternut. , 2002, Plant disease.

[32]  P. Dodds,et al.  Characterisation of a β-tubulin gene from Melampsora lini and comparison of fungal β-tubulin genes , 2001 .

[33]  J. Wingfield,et al.  Phylogenetic relationships between the European and Asian eight spined larch bark beetle populations (Coleoptera, Scolytidae) inferred from DNA sequences and fungal associates , 2001 .

[34]  R. Haack Intercepted Scolytidae (Coleoptera) at U.S. ports of Entry: 1985–2000 , 2001 .

[35]  R. S. Shmookler Reis,et al.  Discrimination of primer 3'-nucleotide mismatch by taq DNA polymerase during polymerase chain reaction. , 2000, Analytical biochemistry.

[36]  R. Witthuhn,et al.  Comparison of isozymes, rDNA spacer regions and MAT-2 DNA sequences as phylogenetic characters in the analysis of the Ceratocystis coerulescens complex , 2000 .

[37]  C. Breuil,et al.  Fungi that cause sapstain in Canadian softwoods , 1999 .

[38]  R. Witthuhn,et al.  PCR-based identification and phylogeny of species of Ceratocystis sensu stricto , 1999 .

[39]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[40]  M. Wingfield,et al.  Ophiostomatoid fungi associated withIps cembrae in Japan and their pathogenicity of Japanese larch , 1998 .

[41]  M. Wingfield,et al.  The Ceratocystis species on conifers , 1998 .

[42]  I. Takahashi,et al.  Ophiostomatoid fungi associated with the spruce bark beetle Ips typographus f. aponicus in Japan , 1997 .

[43]  L. Safranyik,et al.  Pathogenicity to Sitka spruce of Ceratocystis rufipenni and Leptographium abietinum, blue-stain fungi associated with the spruce beetle , 1997 .

[44]  H. Viiri Fungal associates of the spruce bark beetle Ips typographus L. (Col. Scolytidae) in relation to different trapping methods , 1997 .

[45]  H. Solheim,et al.  Fungal associates of five bark beetle species colonizing Norway spruce , 1996 .

[46]  M. Wingfield,et al.  Isozyme variation and species delimitation in the Ceratocystis coerulescens complex. , 1996 .

[47]  R. Luduena Are tubulin isotypes functionally significant. , 1993, Molecular biology of the cell.

[48]  T. Bruns,et al.  ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts , 1993, Molecular ecology.

[49]  K. Seifert Sapstain of commercial lumber by species of Ophiostoma and Ceratocystis , 1993 .

[50]  H. Solheim Fungi associated with the spruce bark beetle Ips typographus in an endemic area in Norway , 1993 .

[51]  H. Solheim Fungal succession in sapwood of Norway spruce infested by the bark beetle Ips typographus , 1992 .

[52]  H. Solheim The early stages of fungal invasion in Norway spruce infested by the bark beetle Ips typographus , 1992 .

[53]  E. Christiansen,et al.  The bark beetle-associated blue-stain fungus Ophiostoma polonicum can kill various spruces and Douglas fir , 1990 .

[54]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[55]  D. Minter,et al.  Dieback and death of larch caused by Ceratocystis laricicola sp. nov. following attack by Ips cembrae , 1987 .

[56]  H. Solheim Species of Ophiostomataceae isolated from Picea abies infested by the bark beetle Ips typographic , 1986 .

[57]  P. Pukkila,et al.  Inheritance of DNA methylation in Coprinus cinereus , 1986, Molecular and cellular biology.

[58]  E. Christiansen Ceratocysts polonica inoculated in Norway spruce: Blue‐staining in relation to inoculum density, resinosis and tree growth , 1985 .

[59]  E. Christiansen,et al.  Artificial inoculation with Ips typographus-associated blue-stain fungi can kill healthy Norway spruce trees [Ceratocystis polonica, Ceratocystis penicillata, water stress] , 1983 .