Optimal Design and Tuning of PID-Type Interval Type-2 Fuzzy Logic Controllers for Delta Parallel Robots

In this work, we propose a new method for the optimal design and tuning of a Proportional-Integral-Derivative type (PID-type) interval type-2 fuzzy logic controller (IT2 FLC) for Delta parallel robot trajectory tracking control. The presented methodology starts with an optimal design problem of IT2 FLC. A group of IT2 FLCs are obtained by blurring the membership functions using a variable called blurring degree. By comparing the performance of the controllers, the optimal structure of IT2 FLC is obtained. Then, a multi-objective optimization problem is formulated to tune the scaling factors of the PID-type IT2 FLC. The Non-dominated Sorting Genetic Algorithm (NSGA-II) is adopted to solve the constrained nonlinear multi-objective optimization problem. Simulation results of the optimized controller are presented and discussed regarding application in the Delta parallel robot. The proposed method provides an effective way to design and tune the PID-type IT2 FLC with a desired control performance.

[1]  F. G. Greg Shinskey,et al.  Process Control Systems: Application, Design and Tuning , 1990 .

[2]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[3]  Tzuu-Hseng S. Li,et al.  Design of interval type-2 fuzzy sliding-mode controller , 2008, Inf. Sci..

[4]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[5]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[6]  Alan S. Morris,et al.  Genetic Algorithm Tuned Fuzzy Logic Controller for a Robot Arm with Two-link Flexibility and Two-joint Elasticity , 2007, J. Intell. Robotic Syst..

[7]  T. Chettibi,et al.  Planning Optimal Motions for a DELTA Parallel Robot , 2006, 2006 14th Mediterranean Conference on Control and Automation.

[8]  Rajani K. Mudi,et al.  A robust self-tuning scheme for PI- and PD-type fuzzy controllers , 1999, IEEE Trans. Fuzzy Syst..

[9]  Arpita Sinha,et al.  Analytical structure and stability analysis of a fuzzy PID controller , 2008, Appl. Soft Comput..

[10]  Han Sung Kim,et al.  Dynamics modeling of a Delta-type parallel robot (ISR 2013) , 2013, IEEE ISR 2013.

[11]  Chun-Fei Hsu,et al.  Type-2 Fuzzy Logic Controller Design for Buck DC-DC Converters , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[12]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[13]  Jerry M. Mendel,et al.  Enhanced Karnik--Mendel Algorithms , 2009, IEEE Transactions on Fuzzy Systems.

[14]  Jerry M. Mendel,et al.  On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  Siti Rozaimah Sheikh Abdullah,et al.  A fuzzy logic controller of two-position pump with time-delay in heavy metal precipitation process , 2011, 2011 International Conference on Pattern Analysis and Intelligence Robotics.

[16]  Slawomir T. Wierzchon Intelligent control: Aspects of fuzzy logic and neural nets: by C.J. HARRIS, C.G. MOORE and M. BROWN; World Scientific Series in Robotics and Automated Systems; World Scientific; Singapore; 1993; xx + 380 pp.; $53-00; ISBN: 981-02-1042-6 , 1995 .

[17]  Milos Manic,et al.  Evaluating uncertainty resiliency of Type-2 Fuzzy Logic Controllers for parallel delta robot , 2011, 2011 4th International Conference on Human System Interactions, HSI 2011.

[18]  Rosdiazli Ibrahim,et al.  Development and implementation of Fuzzy Logic Controller for Flow Control Application , 2010, 2010 International Conference on Intelligent and Advanced Systems.

[19]  Oscar Castillo,et al.  Systematic design of a stable type-2 fuzzy logic controller , 2008, Appl. Soft Comput..

[20]  Oscar Castillo,et al.  A multi-objective optimization of type-2 fuzzy control speed in FPGAs , 2014, Appl. Soft Comput..

[21]  Jong-Hwan Kim,et al.  Type-2 fuzzy airplane altitude control: A comparative study , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[22]  Kuo-Ho Su,et al.  Development of Robotic Grasping Gripper Based on Smart Fuzzy Controller , 2015, Int. J. Fuzzy Syst..

[23]  Umit Onen,et al.  Pid and interval type-2 fuzzy logic control of double inverted pendulum system , 2010, 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE).

[24]  R. Hosnavi,et al.  Controlling the navigation of automatic guided vehicle (AGV) using integrated fuzzy logic controller with programmable logic controller (IFLPLC)—stage 1 , 2010 .

[25]  Oscar Castillo,et al.  Optimal design of interval type 2 fuzzy controllers based on a simple tuning algorithm , 2014, Appl. Soft Comput..

[26]  John Yen,et al.  Autonomous vehicle following by a fuzzy logic controller , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[27]  Kyoung Kwan Ahn,et al.  A torque estimator using online tuning grey fuzzy PID for applications to torque-sensorless control of DC motors , 2015 .

[28]  Ahmad M. El-Nagar,et al.  Derivation and stability analysis of the analytical structures of the interval type-2 fuzzy PID controller , 2014, Appl. Soft Comput..

[29]  Taro Nakamura,et al.  Development of delta robot driven by pneumatic artificial muscles , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[30]  Zhi-Le Xia,et al.  Delay-dependent non-fragile H∞ filtering for uncertain fuzzy systems based on switching fuzzy model and piecewise Lyapunov function , 2010, Int. J. Autom. Comput..

[31]  Adel M. Sharaf,et al.  A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme , 1993 .

[32]  Ming Liu,et al.  Design and Optimization of Interval Type-2 Fuzzy Logic Controller for Delta Parallel Robot Trajectory Control , 2017, Int. J. Fuzzy Syst..

[33]  Ricardo Martínez-Soto,et al.  Optimization of Interval Type-2 Fuzzy Logic Controllers for a Perturbed Autonomous Wheeled Mobile Robot Using Genetic Algorithms , 2009, Soft Computing for Hybrid Intelligent Systems.

[34]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[35]  Masaharu Mizumoto,et al.  PID type fuzzy controller and parameters adaptive method , 1996, Fuzzy Sets Syst..

[36]  Dongrui Wu,et al.  On the Fundamental Differences Between Interval Type-2 and Type-1 Fuzzy Logic Controllers , 2012, IEEE Transactions on Fuzzy Systems.

[37]  Jun Hwan Kim,et al.  A fuzzy PID controller for nonlinear and uncertain systems , 2000, Soft Comput..

[38]  Ming Liu,et al.  A fuzzy logic controller tuned with PSO for delta robot trajectory control , 2015, IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society.

[39]  William Siler,et al.  Fuzzy control theory: A nonlinear case , 1990, Autom..

[40]  Alain Codourey,et al.  Dynamic Modeling of Parallel Robots for Computed-Torque Control Implementation , 1998, Int. J. Robotics Res..

[41]  Hani Hagras,et al.  Interval Type-2 Fuzzy PID Controllers , 2015, Handbook of Computational Intelligence.

[42]  R. Palm,et al.  Sliding mode fuzzy control , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.